• Title/Summary/Keyword: Small animal PET

Search Result 54, Processing Time 0.034 seconds

Quantitative Assessment Technology of Small Animal Myocardial Infarction PET Image Using Gaussian Mixture Model (다중가우시안혼합모델을 이용한 소동물 심근경색 PET 영상의 정량적 평가 기술)

  • Woo, Sang-Keun;Lee, Yong-Jin;Lee, Won-Ho;Kim, Min-Hwan;Park, Ji-Ae;Kim, Jin-Su;Kim, Jong-Guk;Kang, Joo-Hyun;Ji, Young-Hoon;Choi, Chang-Woon;Lim, Sang-Moo;Kim, Kyeong-Min
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 2011
  • Nuclear medicine images (SPECT, PET) were widely used tool for assessment of myocardial viability and perfusion. However it had difficult to define accurate myocardial infarct region. The purpose of this study was to investigate methodological approach for automatic measurement of rat myocardial infarct size using polar map with adaptive threshold. Rat myocardial infarction model was induced by ligation of the left circumflex artery. PET images were obtained after intravenous injection of 37 MBq $^{18}F$-FDG. After 60 min uptake, each animal was scanned for 20 min with ECG gating. PET data were reconstructed using ordered subset expectation maximization (OSEM) 2D. To automatically make the myocardial contour and generate polar map, we used QGS software (Cedars-Sinai Medical Center). The reference infarct size was defined by infarction area percentage of the total left myocardium using TTC staining. We used three threshold methods (predefined threshold, Otsu and Multi Gaussian mixture model; MGMM). Predefined threshold method was commonly used in other studies. We applied threshold value form 10% to 90% in step of 10%. Otsu algorithm calculated threshold with the maximum between class variance. MGMM method estimated the distribution of image intensity using multiple Gaussian mixture models (MGMM2, ${\cdots}$ MGMM5) and calculated adaptive threshold. The infarct size in polar map was calculated as the percentage of lower threshold area in polar map from the total polar map area. The measured infarct size using different threshold methods was evaluated by comparison with reference infarct size. The mean difference between with polar map defect size by predefined thresholds (20%, 30%, and 40%) and reference infarct size were $7.04{\pm}3.44%$, $3.87{\pm}2.09%$ and $2.15{\pm}2.07%$, respectively. Otsu verse reference infarct size was $3.56{\pm}4.16%$. MGMM methods verse reference infarct size was $2.29{\pm}1.94%$. The predefined threshold (30%) showed the smallest mean difference with reference infarct size. However, MGMM was more accurate than predefined threshold in under 10% reference infarct size case (MGMM: 0.006%, predefined threshold: 0.59%). In this study, we was to evaluate myocardial infarct size in polar map using multiple Gaussian mixture model. MGMM method was provide adaptive threshold in each subject and will be a useful for automatic measurement of infarct size.

Impact of inland waters on highly pathogenic avian influenza outbreaks in neighboring poultry farms in South Korea

  • Ahmad, Saleem;Koh, Kyeyoung;Yoo, Daesung;Suh, Gukhyun;Lee, Jaeil;Lee, Chang-Min
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.36.1-36.14
    • /
    • 2022
  • Background: Since 2003, the H5 highly pathogenic avian influenza (HPAI) subtype has caused massive economic losses in the poultry industry in South Korea. The role of inland water bodies in avian influenza (AI) outbreaks has not been investigated. Identifying water bodies that facilitate risk pathways leading to the incursion of the HPAI virus (HPAIV) into poultry farms is essential for implementing specific precautionary measures to prevent viral transmission. Objectives: This matched case-control study (1:4) examined whether inland waters were associated with a higher risk of AI outbreaks in the neighboring poultry farms. Methods: Rivers, irrigation canals, lakes, and ponds were considered inland water bodies. The cases and controls were chosen based on the matching criteria. The nearest possible farms located within a radius of 3 km of the case farms were chosen as the control farms. The poultry farms were selected randomly, and two HPAI epidemics (H5N8 [2014-2016] and H5N6 [2016-2017]) were studied. Conditional logistic regression analysis was applied. Results: Statistical analysis revealed that inland waters near poultry farms were significant risk factors for AI outbreaks. The study speculated that freely wandering wild waterfowl and small animals contaminate areas surrounding poultry farms. Conclusions: Pet birds and animals raised alongside poultry birds on farm premises may wander easily to nearby waters, potentially increasing the risk of AI infection in poultry farms. Mechanical transmission of the AI virus occurs when poultry farm workers or visitors come into contact with infected water bodies or their surroundings. To prevent AI outbreaks in the future, poultry farms should adopt strict precautions to avoid contact with nearby water bodies and their surroundings.

Affinity of Endothelial Cells to a Polyurethane Vascular Graft: A Preliminary Animal Study (폴리우레탄 인공혈관에 대한 혈관내피세포의 친화성: 예비동물실험)

  • Ahn, Seung Hyun;Jun, Young min;Chang, Hak;Park, Chung Hee;Minn, Kyung Won
    • Archives of Plastic Surgery
    • /
    • v.36 no.4
    • /
    • pp.380-384
    • /
    • 2009
  • Purpose: Autologous vessels remain the gold standard for vascular grafts in microanastomoses. However, they are sometimes unavailable and have a limited long - term patency. Synthetic vessels have high success rates in large - diameter reconstructions but failed when used as small - diameter grafts due to graft occlusion. It has been proved that endothelial cell seeding improves prosthesis performance and long - term patency. Among polyurethane, PET and ePTFE, polyurethane has the best affinity to endothelial cells and mechanical properties closest to human vessels. We examined the ability of endothelial cells to attach to a polyurethane graft manufactured by the electrospinning method. Methods: Endothelial cells, which were cultured from porcine internal jugular veins, were attached to polyurethane grafts with an internal diameter of 3 mm. The same cells were attached to allogeneic decellularized porcine internal carotid artery grafts as controls. Both of the 10 mm - long grafts were exposed to endothelial cells in a well for 1 hour. Each well contained $2{\times}10^5$ endothelial cells. The graft materials were rotated through 90 degrees every 15 minutes in order to minimize the effect of gravity. The extent of cell attachment was examined with the MTT assay. Results: The MTT assay showed good incorporation of endothelial cells into both grafts. For the evaluation of affinity, the number of attached cells was counted at 10 fields of microscopic examination with ${\times}40$ magnification. Endothelial cells adhered more to polyurethane grafts (mean, $127.4{\pm}6.2cells$) compared to porcine artery grafts (mean $45.8{\pm}5.1cells$)(p<0.05,Mann - Whitney test). Conclusion: In this study, we attached porcine endothelial cells to polyurethane grafts, manufactured by electrospinning. The grafts exhibited a better affinity to endothelial cells than allogeneic decellularized porcine internal carotid artery grafts. It is suggested that the time required for endothelial cells to attach to decellulized artery grafts may be longer than that which is required for attachment to polyurethane grafts.