• Title/Summary/Keyword: Small Scale Grid

Search Result 133, Processing Time 0.025 seconds

Behaviour Characteristic of Grid Dome Shaped Space Structures by Post-tensioning (포스트텐션에 의한 격자 돔형 공간 구조의 거동 특성)

  • 김진우
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.41-45
    • /
    • 2002
  • This paper is concerned with the erection and ultimate load test of dome shaped space structures by post-tensioning. It is a fast and economical method for constructing such a dome by post-tensioning of the cable in bottom chords. This structure consists of uniform pyramids in a flat layouts on the ground, and then the structure is shaped and erected into its final curved space structure. Ultimate load test was performed for dome shaped space structures. The feasibility of the proposed erection method and the reliability of the established geometric model were confirmed with numerical analysis and experimental investigation on a small scale steel model. As a results we can find the most reasonable modeling technique for the prediction of shape formation in practices and we can know the characteristic of the behaviour in ultimate load test for practical design purposes.

Optimum Design of a Y-channel Microcmixer for Enhanced Mixing (혼합 개선을 위한 Y-채널 마이크로 믹서의 최적설계)

  • Shin Yong-Su;Choi Hyung-Il;Lee Dong-Ho;Lee Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.302-309
    • /
    • 2006
  • Effective mixing plays a crucial role in microfluidics for biochemical applications. Owing to the small device scale and its entailing the low Reynolds number, the mixing in microchannels proceeds very slowly. In this work, we optimize the configuration of obstacles in the Y-channel mixer in order to attain maximum mixing efficiency. Before the optimum design, mixing characteristics are investigated using unstructured grid CFD method. Then, the analysis method is employed to construct the approximate analysis model to be used in the optimization procedure. The main optimization tool in the present work is sequential quadratic programming method. Using this approximate optimization procedure, we may obtain the optimum layout of obstacles in the Y-channel mixer in an efficient manner, which gives the maximum mixing efficiency.

Active Damping for Wind Power Systems with LCL Filters Using a DFT

  • Lee, June-Seok;Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.326-332
    • /
    • 2012
  • This paper proposes a simple active damping algorithm for small-scale wind power systems with an LCL filter. Compared to an L filter or an LC filter, an LCL filter can decrease the harmonics induced by low switching frequencies and produce a satisfactory grid-side current using a comparatively low inductance. Additional active damping of the filter resonance is necessary when an LCL filter is used. This paper introduces an active damping method using a Discrete Fourier Transform (DFT) filter to improve performance without additional sensors or complexity. Experimental results are shown to verify the validity of the proposed algorithm as an active damping method.

Generation and Verification on the Synthetic Precipitation/Temperature Data

  • Oh, Jai-Ho;Kang, Hyung-Jeon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2016.09a
    • /
    • pp.25-28
    • /
    • 2016
  • Recently, because of the weather forecasts through the low-resolution data has been limited, the demand of the high-resolution data is sharply increasing. Therefore, in this study, we restore the ultra-high resolution synthetic precipitation and temperature data for 2000-2014 due to small-scale topographic effect using the QPM (Quantitative Precipitation Model)/QTM (Quantitative Temperature Model). First, we reproduce the detailed precipitation and temperature data with 1km resolution using the distribution of Automatic Weather System (AWS) data and Automatic Synoptic Observation System (ASOS) data, which is about 10km resolution with irregular grid over South Korea. Also, we recover the precipitation and temperature data with 1km resolution using the MERRA reanalysis data over North Korea, because there are insufficient observation data. The precipitation and temperature from restored current climate reflect more detailed topographic effect than irregular AWS/ASOS data and MERRA reanalysis data over the Korean peninsula. Based on this analysis, more detailed prospect of regional climate is investigated.

  • PDF

The Power Brokerage Trading System for Efficient Management of Small-Scale Distributed Energy-Resources (소규모 분산에너지자원의 효율적인 관리를 위한 전력중개거래시스템)

  • Yang, Soo-Young;Kim, Yo-Han;Lee, Woo;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.735-742
    • /
    • 2021
  • Recently, renewable energy-related power generation facilities have been surging due to the government's "Renewable Energy 3020", "Green New Deal", "2050 Carbon Neutrality" and "K-RE100" policies. Most renewable energy facilities are small and distributed, making it difficult to manage efficiently, and small distributed resources less than 1MW are having a hard time with participating in the market due to the limited sales and avoidance of trading. In particular, the intermittency of renewable energy has a significant impact on the stability of the power grid. The government is seeking to address volatility and intermittency issues through 'small distributed resource brokerage trading, and to expand the systematic resourceization and acceptability of heterogeneous large and small distributed resources. In this work, we intend to apply an AI-based power generation prediction model to a distributed resource brokerage trading system so that it can be utilized as a foundation platform for pioneering new energy business markets.

Analysis of Spatial Variability in a Korean Paddy Field Using Median Polish Detrending (Median polish 기법을 이용한 한국 논의 공간변이 분석)

  • Chung, Sun-Ok;Jung, In-Kyu;Sung, Je-Hoon;Sudduth, Kenneth A.;Drummond, Scott T.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.362-369
    • /
    • 2008
  • There is developing interest in precision agriculture in Korea, despite the fact that typical Korean fields are less than 1 ha in size. Describing within-field variability in typical Korean production settings is a fundamental first step toward determining the size of management zones and the inter-relationships between limiting factors, for establishment of site-specific management strategies. Measurements of rice (Oriza Sativa L) yield, chlorophyll content, and soil properties were obtained in a small (100-m by 30-m) Korean rice paddy field. Yield data were manually collected on 10-m by 5-m grids (180 samples with 3 samples in each of 60 grid cells) and chlorophyll content was measured using a Minolta SPAD 502 in 2-m by 2-m grids. Soil samples were collected at 275 points to compare results from sampling at different scales. Ten soil properties important for rice production in Korea were determined through laboratory analyses. Variogram analysis and point kriging with and without median polishing were conducted to determine the variability of the measured parameters. Influence of variogram model selection and other parameters on the interpretation of the data was investigated. For many of the data, maximum values were greater than double the minimum values, indicating considerable spatial variability in the small paddy field, and large-scale spatial trends were present. When variograms were fit to the original data, the limits of spatial dependency for rice yield and SP AD reading were 11.5 m and 6.5 m, respectively, and after detrending the limits were reduced to 7.4 m and 3.9 m. The range of spatial dependency for soil properties was variable, with several having ranges as short as 2 m and others having ranges greater than 30 m. Kriged maps of the variables clearly showed the presence of both large-scale (trend) variability and small-scale variability in this small field where it would be reasonable to expect uniformity. These findings indicate the potential for applying the principles and technology of precision agriculture for Korean paddy fields. Additional research is needed to confirm the results with data from other fields and crops.d similar tendency with the result for the frequency less than 20 Hz, but the width of change was reduced highly.

Implementation of Small-Scale Wind Turbine Monitoring and Control System Based on Wireless Sensor Network (무선 센서 네트워크 기반 소규모 풍력발전기 모니터링 및 제어 시스템 구현)

  • Kim, Do-Young;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1808-1818
    • /
    • 2015
  • Recently, the wind power has experienced great attentions and growths among many renewable energy sources. To increase the power generation performance and economic feasibility, the size of wind turbine (WT) is getting bigger and most of wind power plants are being constructed on offshore. Therefore, the maintenance cost is relatively high because boats or helicopters are needed operators to reach the WT. In order to combat this kind of problem, remote monitoring and control system for the WT is needed. In this paper, the small-scale WT monitoring and control system is implemented using wireless sensor network technologies. To do this, sensor devices are installed to measure and send the WT status and control device is installed to receive control message for specific operation. The WT is managed by control center through graphic user interface (GUI) based monitoring and control software. Also, smart device based web-program is implemented to make the remote monitoring of the WT possible even though operators are not in control room.

Application and First Evaluation of the Operational RAMS Model for the Dispersion Forecast of Hazardous Chemicals - Validation of the Operational Wind Field Generation System in CARIS (유해화학물질 대기확산 예측을 위한 RAMS 기상모델의 적용 및 평가 - CARIS의 바람장 모델 검증)

  • Kim, C.H.;Na, J.G.;Park, C.J.;Park, J.H.;Im, C.S.;Yoon, E.;Kim, M.S.;Park, C.H.;Kim, Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.595-610
    • /
    • 2003
  • The statistical indexes such as RMSE (Root Mean Square Error), Mean Bias error, and IOA (Index of agreement) are used to evaluate 3 Dimensional wind and temperature fields predicted by operational meteorological model RAMS (Regional Atmospheric Meteorological System) implemented in CARIS (Chemical Accident Response Information System) for the dispersion forecast of hazardous chemicals in case of the chemical accidents in Korea. The operational atmospheric model, RAMS in CARIS are designed to use GDAPS, GTS, and AWS meteorological data obtained from KMA (Korean Meteorological Administration) for the generation of 3-dimensional initial meteorological fields. The predicted meteorological variables such as wind speed, wind direction, temperature, and precipitation amount, during 19 ∼ 23, August 2002, are extracted at the nearest grid point to the meteorological monitoring sites, and validated against the observations located over the Korean peninsula. The results show that Mean bias and Root Mean Square Error are 0.9 (m/s), 1.85 (m/s) for wind speed at 10 m above the ground, respectively, and 1.45 ($^{\circ}C$), 2.82 ($^{\circ}C$) for surface temperature. Of particular interest is the distribution of forecasting error predicted by RAMS with respect to the altitude; relatively smaller error is found in the near-surface atmosphere for wind and temperature fields, while it grows larger as the altitude increases. Overall, some of the overpredictions in comparisons with the observations are detected for wind and temperature fields, whereas relatively small errors are found in the near-surface atmosphere. This discrepancies are partly attributed to the oversimplified spacing of soil, soil contents and initial temperature fields, suggesting some improvement could probably be gained if the sub-grid scale nature of moisture and temperature fields was taken into account. However, IOA values for the wind field (0.62) as well as temperature field (0.78) is greater than the 'good' value criteria (> 0.5) implied by other studies. The good value of IOA along with relatively small wind field error in the near surface atmosphere implies that, on the basis of current meteorological data for initial fields, RAMS has good potentials to be used as a operational meteorological model in predicting the urban or local scale 3-dimensional wind fields for the dispersion forecast in association with hazardous chemical releases in Korea.

CFD ANALYSIS OF TURBULENT JET BEHAVIOR INDUCED BY A STEAM JET DISCHARGED THROUGH A VERTICAL UPWARD SINGLE HOLE IN A SUBCOOLED WATER POOL

  • Kang, Hyung-Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.382-393
    • /
    • 2010
  • Thermal mixing by steam jets in a pool is dominantly influenced by a turbulent water jet generated by the condensing steam jets, and the proper prediction of this turbulent jet behavior is critical for the pool mixing analysis. A turbulent jet flow induced by a steam jet discharged through a vertical upward single hole into a subcooled water pool was subjected to computational fluid dynamics (CFD) analysis. Based on the small-scale test data derived under a horizontal steam discharging condition, this analysis was performed to validate a CFD method of analysis previously developed for condensing jet-induced pool mixing phenomena. In previous validation work, the CFD results and the test data for a limited range of radial and axial directions were compared in terms of profiles of the turbulent jet velocity and temperature. Furthermore, the behavior of the turbulent jet induced by the steam jet through a horizontal single hole in a subcooled water pool failed to show the exact axisymmetric flow pattern with regards to an overall pool mixing, whereas the CFD analysis was done with an axisymmetric grid model. Therefore, another new small-scale test was conducted under a vertical upward steam discharging condition. The purpose of this test was to generate the velocity and temperature profiles of the turbulent jet by expanding the measurement ranges from the jet center to a location at about 5% of $U_m$ and 10 cm to 30 cm from the exit of the discharge nozzle. The results of the new CFD analysis show that the recommended CFD model of the high turbulent intensity of 40% for the turbulent jet and the fine mesh grid model can accurately predict the test results within an error rate of about 10%. In this work, the turbulent jet model, which is used to simply predict the temperature and velocity profiles along the axial and radial directions by means of the empirical correlations and Tollmien's theory was improved on the basis of the new test data. The results validate the CFD model of analysis. Furthermore, the turbulent jet model developed in this study can be used to analyze pool thermal mixing when an ellipsoidal steam jet is discharged under a high steam mass flux in a subcooled water pool.

Topographic Survey at Small-scale Open-pit Mines using a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (보급형 회전익 무인항공기(드론)를 이용한 소규모 노천광산의 지형측량)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.462-469
    • /
    • 2015
  • This study carried out a topographic survey at a small-scale open-pit limestone mine in Korea (the Daesung MDI Seoggyo office) using a popular rotary-wing unmanned aerial vehicle (UAV, Drone, DJI Phantom2 Vision+). 89 sheets of aerial photos could be obtained as a result of performing an automatic flight for 30 minutes under conditions of 100m altitude and 3m/s speed. A total of 34 million cloud points with X, Y, Z-coordinates was extracted from the aerial photos after data processing for correction and matching, then an orthomosaic image and digital surface model with 5m grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 5 ground control points measured by differential global positioning system and those determined by UAV photogrammetry revealed that the root mean squared errors of X, Y, Z-coordinates were around 10cm. Therefore, it is expected that the popular rotary-wing UAV photogrammetry can be effectively utilized in small-scale open-pit mines as a technology that is able to replace or supplement existing topographic surveying equipments.