• 제목/요약/키워드: Small G protein

검색결과 399건 처리시간 0.036초

Modeling Nutrient Supply to Ruminants: Frost-damaged Wheat vs. Normal Wheat

  • Yu, Peiqiang;Racz, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권3호
    • /
    • pp.333-339
    • /
    • 2010
  • The objectives of this study were to use the NRC-2001 model and DVE/OEB system to model potential nutrient supply to ruminants and to compare frost damaged (also called "frozen" wheat with normal wheat. Quantitative predictions were made in terms of: i) Truly absorbed rumen synthesized microbial protein in the small intestine; ii) Truly absorbed rumen undegraded feed protein in the small intestine; iii) Endogenous protein in the digestive tract; iv). Total truly absorbed protein in the small intestine; and v). Protein degraded balance. The overall yield losses of the frozen wheat were 24%. Results showed that using the DVE/OEB system to predict the potential nutrient supply, the frozen wheat had similar truly absorbed rumen synthesized microbial protein (65 vs. 66 g/kg DM; p>0.05), tended to have lower truly absorbed rumen undegraded feed protein (39 vs. 53 g/kg DM; p<0.10) and had higher endogenous protein (14 vs. 9 g/kg DM; p<0.05). Total truly absorbed protein in the small intestine was significantly lower (89 vs. 110 g/kg DM, p<0.05) in the frozen wheat. The protein degraded balance was similar and both were negative (-2 vs. -1 g/kg DM). Using the NRC-2001 model to predict the potential nutrient supply, the frozen wheat also had similar truly absorbed rumen synthesized microbial protein (average 56 g/kg DM; p>0.05), tended to have lower truly absorbed rumen undegraded feed protein (35 vs. 48, g/kg DM; p<0.10) and had similar endogenous protein (average 4 g/kg DM; p>0.05). Total truly absorbed protein in the small intestine was significantly lower (95 vs. 108 g/kg DM, p<0.05) in the frozen wheat. The protein degraded balance was not significantly different and both were negative (-16 vs. -19 g/kg DM). In conclusion, both models predict lower protein value and negative protein degraded balance in the frozen wheat. The frost damage to the wheat reduced nutrient content and availability and thus reduced nutrient supply to ruminants by around 12 to 19%.

Arabidopsis nucleoside diphosphate kinase-2 as a plant GTPase activating protein

  • Shen, Yu;Han, Yun-Jeong;Kim, Jeong-Il;Song, Pill-Soon
    • BMB Reports
    • /
    • 제41권9호
    • /
    • pp.645-650
    • /
    • 2008
  • Nucleoside diphosphate kinase (NDPK) is involved in multiple signaling pathways in mammalian systems, including G-protein signaling. Arabidopsis NDPK2, like its mammalian counterparts, is multifunctional despite its initial discovery phytochrome-interacting protein. This similarity raises the possibility that NDPK2 may play a role in G-protein signaling in plants. In the present study, we explore the potential relationship between NDPK2 and the small G proteins, Pra2 and Pra3, as well as the heterotrimeric G protein, GPA1. We report a physical interaction between NDPK2 and these small G proteins, and demonstrate that NDPK2 can stimulate their GTPase activities. Our results suggest that NDPK2 acts as a GTPase-activating protein for small G proteins in plants. We propose that NDPK2 might be a missing link between the phytochrome-mediated light signaling and G protein-mediated signaling.

Dietary protein requirements of abalone (Haliotis discus, Reeve 1846) depending on abalone size

  • Baek, Seong Il;Cho, Sung Hwoan
    • Fisheries and Aquatic Sciences
    • /
    • 제24권3호
    • /
    • pp.129-137
    • /
    • 2021
  • Dietary protein requirements of abalone (Haliotis discus) depending on abalone size were determined and compared. One thousand and fifty small abalone (initial weight of 2.7 g) and five hundred forty large one (initial weight of 16.0 g) were distributed into 15 and 18 containers in Trial 1 and 2, respectively. Five and six experimental diets containing crude protein level from 20% to 40% and 20% to 45% with 5% increment of protein level for the small and large abalone were prepared and referred to as the CP20, CP25, CP30, CP35, CP40, and CP45 diets, respectively. The experimental diets were fed to abalone for 16 weeks in Trials 1 and 2. Specific growth rate (SGR) of the small abalone fed the CP20 diet was lower compared to that of abalone fed all other diets in Trial 1. Growth performance (weight gain and SGR) of the large abalone fed the CP30, CP35, and CP40 diets were greater than that of abalone fed the CP20, CP25, and CP45 diets in Trial 2. Dietary protein requirements were estimated to be 33.0% and 33.5% for the small and large abalone based on the 2nd order polynomial analysis, respectively. Dietary protein requirements for the small abalone grown from 2.7 g to 7.4 g and the large one grown from 16 g to 21 g were estimated to be 33.0% and 33.5%, respectively. Size differences in abalone did not affect dietary protein requirement under this experimental conditions.

Determination of Optimal Conditions of Pressure Toasting on Legume Seeds for Dairy Deed Industry : I. Effects of Pressure Toasting on Nutritive Values of Lupinus albus in Lactating Dairy Cows

  • Yu, P.;Goelema, J.O.;Tamminga, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권8호
    • /
    • pp.1205-1214
    • /
    • 1999
  • Whole lupinus albus seeds were pressure toasted at temperatures of 100, 118 and $136^{\circ}C$ for 3, 7, 15 and 30 min to study rumen degradation and post-rumen digestion and to determine optimal heating conditions for the Dutch dairy feed industry. In sacco nylon bag and mobile bag techniques were employed for rumen and intestine incubations to determine ruminal degradation characteristics and intestinal digestion of crude protein (CP) in 4 lactation rumen cannulated and 4 lactating intestinal cannulated Dutch dairy cows fed 47% hay and 53% concentrate according to Dutch dairy requirements. Measured rumen degradation characteristics were soluble fraction (S), undegradable fraction (U), potentially degradable fraction (D), lag time (T0) and rate of degradation (Kd) of insoluble but degradable fraction. Percentage bypass feed protein (BCP), ruminal microbial protein synthesized based on available nitrogen (N_MP) and that based on available energy (E_MP), true protein supplied to the small intestine (TPSI), truly absorbed BCP (ABCP), absorbed microbial protein (AVP) in the small intestine, endogenous protein losses in the digestion (ENDP), true digested protein in the small intestine (TAP or DVE in Dutch) and degraded protein balance (PDB or OEB in Dutch) were totally evaluated using the new Dutch DVE/OEB System. Pressure toasting decreased (p<0.001) rumen degradability of CP. It reduced S (p<0.05) and Kd (p=0.06), increased D (p<0.05) and U (p<0.01) but did not alter T0 (p>0.05), thus resulting in dramatically increased BCP (p<0.001) with increasing time and temperature from 73.7 (raw) up to 182.5 g/kg DM ($136^{\circ}C/15min$). Although rumen microbial protein synthesized based on available energy (E_MP) was reduced, true protein (microbial and bypass feed protein) supplied to the small intestine (TPSI) was increased (p<0.001) from 153.1 (raw) to 247.6 g/kg DM ($136^{\circ}C/15min$). Due to digestibility of BCP in the intestine not changing (p>0.05) average 87.8%, the absorbed BCP increased (p<0.001) from 62.3 (raw) to 153.7 g/kg DM ($136^{\circ}C/15min$). Therefore DVE value of true digested protein in the small intestine was significantly increased (p<0.001) from 118.9 (raw) to 197.0 g/kg DM ($136^{\circ}C/15min$) and OEB value of degraded protein balance was significantly reduced (p<0.001) from 147.2 (raw) to 63.1 g/kg DM ($136^{\circ}C/15min$). It was concluded that pressure toasting was effective in shifting degradation of CP of lupinus albus from the rumen to small intestine without changing intestinal digestion. Further studies are required on the degradation and digestion of individual amino acids and on the damaging effects of processing on amino acids, especially the first limiting amino acids.

G Protein-Coupled Receptors: Molecular Organization and Regulatory Mechanisms

  • Caron, Marc G.
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.82-87
    • /
    • 1994
  • Signal transduction through G protein-coupled receptors comprises three functional components, a receptor, a G protcin and a effector protein. Work over the last sevcral ycars has led to the characterization or virtually all of the components or these systems. what has come out or those studies is that these mechanisms of signal transduction are pervasive in nature being found in mammalian and avian species, as well as lower organisms such as yeast and slime mold. It is known that G protein-coupled receptors mediate the action of such diverse molecules such as small hormones and neurotransmitters, small peptide molecules as well as glycoprotein hormones and various sensory perceptions such as light, olfaction and most likely taste.

  • PDF

생쥐의 간과 HepG2 세포에 있어서 내인성 small heterodimer partner (SHP)의 단백질 수준에 미치는 cholic acid/CDCA 및 FGF-19의 효과 (Effects of Cholic Acid/CDCA and FGF-19 on the Protein Levels of the Endogenous Small Heterodimer Partner (SHP) in the Mouse Liver and HepG2 Cells)

  • 민계식
    • 생명과학회지
    • /
    • 제19권12호
    • /
    • pp.1731-1736
    • /
    • 2009
  • 최근의 연구에서 생쥐에 장기간 서구식 사료를 급여했을 때 내인성 SHP 단백질의 수준이 증가함을 보고하였다. 또한 HepG2 세포배양을 통한 실험에서, CDCA 처리가 내인성 SHP 단백질의 수준을 증가시킬 뿐만 아니라 외인성으로 발현된 flag-SHP의 분해율을 감소시켰다. 그리고 HepG2 세포를 ad-flag-SHP로 유전자 형질전환 시켰을 때, 담즙산에 의해 유도되어진 소장 FGF-19이 외인성으로 발현된 flag-SHP 단백질의 반감기를 증가시켰다. 그러나 cholic acid와 FGF-19에 의한 내인성 SHP 단백질의 발현수준과 분해율은 생쥐 또는 배양된 간암세포주에서 아직 명확히 이해되고 있지 않다. 이 연구는 cholic acid의 처리가 생쥐에서 내인성 SHP 단백질의 수준에 미치는 영향과, FGF-19이 HepG2 세포주에서 내인성 SHP 단백질의 분해율에 미치는 영향을 조사하였다. 정상적인 사료를 급여한 대조군 생쥐에서의 내인성 SHP 단백질 수준과 비교하여, 0.5%의 cholic acid를 첨가한 사료를 급여한 생쥐에서는 12시간과 24시간의 처리기간 동안에 내인성 SHP 단백질의 수준이 증가하였다. 배양된 인간 간암세포주인 HepG2에서 CDCA의 처리는 CDCA를 처리하지 않은 대조군 세포주와 비교하여 내인성 SHP 단백질의 분해율을 유의성 있게 변화시키지 않았다. 한편 외인성 ad-flag-SHP 단백질에 대한 이전의 연구와 일치하게, HepG2 세포에 cyclohexamide를 처리하였을 때 FGF-19는 내인성 SHP 단백질의 분해율을 현저히 감소시켰다. 이러한 결과는 담즙산과 FGF-19 모두 생쥐의 간과 HepG2 세포주에서 내인성 SHP 단백질의 수준을 증가시킴을 제시한다.

Finding and Characterization of Viral Nonstructural Small Protein in Prospect Hill Virus Infected Cell

  • 남기연;정동훈;최재원;이윤성;이평우
    • 대한바이러스학회지
    • /
    • 제29권4호
    • /
    • pp.221-233
    • /
    • 1999
  • Prospect Hill Virus (PHV) is the well known serotype of hantavirus, a newly established genus in family Bunyaviridae. Extensive studies have upheld the original view of PHV genetics with three genes such as nucleocapsid (N) protein, envelope proteins (G1, G2) and RNA dependent RNA polymerase. In this study, we report the existence of additional gene that is encoded in an overlapping reading frame of the N protein gene within S genome segment of PHV. This gene is expected to encode a nonstructural small (NSs) protein and it seems to be only found in PHV infected cell. The presence and synthesis of NSs protein could be demonstrated in the cell infected with PHV using anti-peptide sera specific to the predicted amino acid sequence deduced from the second open reading frame. Ribosomal synthesis of this protein appears to occur at AUG codon at the 83rd base of S genome segment, downstream of N protein initiation codon. This protein is small in size (10.4 KDa) and highly basic in nature. The expression strategy of NSs protein appears that a signal mRNA is used to translate both N and NSs protein in PHV infected cell. 10 KDa protein in virus infected cell lysates can bind to mimic dsRNA. This fact strongly suggests that NSs protein may be involved in virus replication on late phase of viral life cycle.

  • PDF

Blood biochemical parameters and organ development of brown layers fed reduced dietary protein levels in two rearing systems

  • Viana, Eduardo de Faria;Mello, Heloisa Helena de Carvalho;Carvalho, Fabyola Barros;Cafe, Marcos Barcellos;Leandro, Nadja Susana Mogyca;Arnhold, Emmanuel;Stringhini, Jose Henrique
    • Animal Bioscience
    • /
    • 제35권3호
    • /
    • pp.444-452
    • /
    • 2022
  • Objective: An experiment was conducted to evaluate the effect of different levels of crude protein (CP) and two rearing systems (cage and floor), on blood parameters and digestive and reproductive organ development of brown laying hens. Methods: A total of 400 Hisex Brown laying hens between 30 and 45 weeks of age were distributed in a completely randomized design and a 2×4 factorial arrangement, with main effects including two rearing systems (cage and floor) and levels of CP (140, 150, 160, and 180 g/kg), in a total of eight treatments and five replicates of 10 birds each with initial body weight of 1,877 g (laying hen in cage) and 1,866 g (laying hens in floor). The parameters evaluated were plasma total protein, albumin, uric acid, total cholesterol, relative weights of oviduct, abdominal fat, liver, gizzard, crest and dewlap, length of small intestine and oviduct. Results: The blood parameters were similar in birds reared in cage and floor systems. The birds reared on the floor showed greater small intestine and oviduct weight (%) and lower liver and pancreas weight (%). A significant interaction was observed between factors for the relative gizzard, crest and dewlap weight, serum protein, uric acid, and total cholesterol (p<0.05). The diets with 140 g/kg CP resulted in lower serum protein and lower cholesterol in birds reared in floor system, while birds reared in cage system showed no effect of CP on both parameters. Birds reared in cage and fed with 140 and 150 g/kg CP presented lower uric acid. The group of birds reared in floor system fed 180 g/kg had greater uric acid. Conclusion: The dietary protein level can be reduced up to 140 g/kg for Hisex Brown hens (30 to 45 weeks of age) without an important effect on metabolic profile and organ development in both rearing systems.

Ethanol의 농도(濃度)에 따른 Sulfadimethoxine의 흡수(吸收)와 배설(排泄)에 관한 연구(硏究) (Effect of Ethanol on Absorption and Excretion of Sulfadimethoxine)

  • 최준식;이진환
    • Journal of Pharmaceutical Investigation
    • /
    • 제6권1호
    • /
    • pp.18-25
    • /
    • 1976
  • The purpose of this investigation was to determine the effect of ethanol on the absorption, excretion and protein binding of sulfadimethoxine from the small intestine of the rat and rabbit. The results are as follows: 1. The rat small intestinal absorption of sulfadimethoxine was increased by 0.5% and 2% ethanol. 2. Blood level of sulfadimethoxine after oral administration was significantly elevated (p<0.01) by 0.5g/kg and 1g/kg ethanol respectively, but was significantly inhibited by 3g/kg ethanol from that of the control. 3. Ethanol gave the effect on the clearance of sulfadimethoxine, which was increased by ethanol from that of control. 4. In the protein binding rate, it was found that ethanol decreased protein binding of sulfadimethoxine except 0.1% and 0.5% ethanol.

  • PDF