• Title/Summary/Keyword: Small Form Factor Optical Disk Drive

Search Result 18, Processing Time 0.029 seconds

Design of Slim Optical Pickup for Blu-ray Disk (광 정보 저장 기기용 초소형 광픽업 설계)

  • 이상혁;정미숙;손진승;송태선;박노철;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.386-389
    • /
    • 2003
  • Recent issues in Optical Disk Drive (ODD) are focused on small size. Blu-ray Disk (BD), using blue laser (405nm wavelength) and high NA (0.85) objective lens. can store 25Gbyte on a conventional 12cm optical disk. Small Form Factor Optical (SFFO) drive uses 3cm disk which can store 1.5Gbyte on a disk. This kind of Small Form Factot Optical (SFFO) drive correspond to PCMCIA type memory (Compact Flash or Micro Drive). Preferably, Optical Disk has relatively low cost of the storage media per Byte rather than PCMCIA type memory. To make Small Form Factor Optical (SFFO) drive. optical pickup and its component must be miniaturized. Miniaturization of the component needs new concept of Optical Pickup. This paper is focused on two main subjects. One is Objective Lens design which can be manufactured on a wafer, and the other is optical path design of the pickup which has 2mm thickness.

  • PDF

1-Axis Actuator for Compensating Focus Error and SA due to the Variation of Cover-Layer Thickness in Small-Form-Factor Optical Disk (초소형 광디스크의 보호층 두께 편차 보상용 1축 엑츄에이터)

  • Park, Jin-Moo;Hong, Sam-Nyol;Choi, In-Ho;Kim, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.227-231
    • /
    • 2004
  • Technological advance in information technology has sparked the necessity of small form factor (SFF) optical disk for mobile devices. Small form factor optical disk is highly anticipated to be a next generation storage device because it can be used for a cost-effective way compared with solid state memory. For the application to the 5 mm height small-form-factor optical disk drive, we have presented an optical flying head and swing arm actuator. In this study, we propose a small 1-axis actuator for compensating ficus error and SA due to the variation of cover-layer thickness in the cover-layered small optical disk. The main design issues of the 1-axis actuator are the realization of compact structure and the new support structure of the actuator: Finally, the compensating principle and performance of the 1-axis actuator will be explained.

  • PDF

Design of Optical Path for Small Form Factor Optical Disk Drive and Fabrication of Micro-Compensatory Lens (초소형 광 정보 저장 기기를 위한 광 경로 설계 및 마이크로 보정 렌즈 제작)

  • 김홍민;정경성;최우재;박노철;강신일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.115-118
    • /
    • 2002
  • The purpose of this paper is to design a pick-up for the small form factor optical disk drive and to fabricate a micro-compensatory lens for the pick-up using the micro-compression molding process. At design stage, the optical elements including the objective lens and the compensatory lens are miniaturized. The height of pick-up and free working distance are designed as 2mm and 0.2% respectively. To analyze the fabricated micro-compensatory lens, the system was analyzed using the surface profile of the fabricated micro-compensatory lens and CODE V which is commercial software. The RMS wave front aberration of the system using fabricated micro-compensatory lens is 0.01677λ which is lower than Marechal's criterion, 0.07λ.

  • PDF

Design of a Small Form Factor Swing Arm type Actuator using Design of Experiments (실험계획법을 이용한 초소형 스윙암 액추에이터의 설계)

  • Park Chul;Yoo Jeong-Hoon;Park No-Ceol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.813-819
    • /
    • 2006
  • The state of the art for the design of swing ann actuators for optical disc drives is to obtain the high efficient dynamic characteristics, especially for the small size for the mobile information devices, It is affected by the need of consumers who wants the portable digital storage devices maintaining highly functional and removable characteristics of the optical disk drive (ODD). As a necessary consequence, the need of the small form factor (SFF) storage device has been considered as an important part in the information storage technology. In this paper. we suggest a new conceptual miniaturized swing arm type actuator that has high efficient dynamic characteristics as well as satisfies the sensitivity and the heat emission requirements for the SFF-ODD. It also uses a tracking electromagnetic (EM) circuit for a focusing motion. Due to the size constraint, the thermal problem of optical head arises; therefore, we design an efficiently heat emitted structure for the actuator.

  • PDF

Development of Rotary VCM type Actuator for Small Form Factor Optical Disk Drive (초소형 광디스크 드라이브용 VCM타입 엑추에이터 개선)

  • Woo, Jung-Hyun;Kim, Sa-Ung;Song, Myong-Gyu;Lee, Dong-Joo;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.474-478
    • /
    • 2006
  • It is becoming more significant to develop a rotary voice coil motor(VCM) type's actuator for small form factor (SFF) optical disk drive(ODD), as portables are getting more and more popularized nowadays. The actuator which is applicable to small-sized ODD with a compact flash(CF) II card size was developed and fabricated. The experimental results showed that the finite element(FE) model is different from the fabricated model. And so flexible mode frequencies did not satisfy specifications of small-sized ODD, and tuning. Tuning procedures were required to improve dynamic characteristics of the fabricated actuator through finite difference method(FDM). At first, design variables were extracted through parameter study and the tuned FE model was improved by design of experiment(DOE). Consequently, It was confirmed that the improved model was applicable to SFF ODD.

  • PDF

Shock Response Analysis of Small Form Factor Optical Disk Drive using Finite Element Method (유한 요소법을 이용한 초소형 광디스크 드라이브의 충격해석)

  • 김시정;장영배;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.173-176
    • /
    • 2004
  • Nowadays, mobile devices are very common equipments such as mobile phone, PDA, etc. These equipments need information storage devices. Optical storage devices have more advantages than other storage devices, but it is not free from shock situation like dropping by user's mistakes. A complete model of a Small Form Factor Optical(SFFO) disk drive subject to shock loads is developed to investigate the response of the pickup/disk interface. With this model, we can simulate the drop test and consider the matters of shock simulation using commercial software(Ansys/LS-Dyna).

  • PDF

A FEM Analysis of Dynamic Behavior for a Slider with Curvature Effect

  • Lim, Sung-Keun;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.5 no.2
    • /
    • pp.44-48
    • /
    • 2004
  • A new type slider with optical components is going to be introduced on market for portalbe and high capacity disk drive, and it will show a great potential for high performance drive in the paper the dynamic behavior and static characteristics of silder for a small form factor optical disk drive have been investigated numerically by an in-house simulation code using FEM. A curvature effect is found when a slider is applied to a relatively small disk, which makes rolling characteristics worse due to the negative pressured generated at the air bearing surface because of the curvature of small disk diameter.

Structural design of small form factor swing arm type actuators with thermal stability (열안정성을 고려한 초소형 정보저장기기용 액추에이터 구조설계)

  • Park, Chul;Yoo, Jeong-Hoon;Park, No-Cheol;Park, Young-Pil;Shimano, Takeshi;Nakamura, Shigeo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.208-213
    • /
    • 2006
  • The present state of the design of swing arm actuators for optical disc drives is to obtain the high efficient dynamic characteristics within a very compact volume. As a necessary consequence, the need of the small form factor (SFF) storage device has been arisen as major interests in the information storage technology. In this paper, we suggest the miniaturized swing arm type actuator that has high efficient dynamic characteristics for SFF optical disk drive (ODD). For the operating mechanism, it uses a tracking electromagnetic (EM) circuit for a focusing motion together. Moreover, due to the size constraint, the thermal stability of optical head is important. Therefore, the actuator is designed to emit the heat, which is generated by optical pick-up, along the actuator body easily. Initial model is designed based on the topology optimization method considering the thermal conductivity. Then, the structural parts of the actuator are modified to maintain the high sensitivity and to have wide control bandwidth by the design of experiments method (DOE) and new concept of decreasing mass and inertia. Finally, a swing arm type actuator for SFF ODD is suggested and its dynamic characteristics are verified.

  • PDF

Sliding mode control of small form factor optical pick-up actuator using PZT (PZT를 이용한 초소형 광 픽업 엑츄에이터의 슬라이딩 모드 제어)

  • Lee, Woo-Chul;Jung, Dong-Ha;Park, Tae-Wook;Park, No-Cheol;Yang, Hyun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.424-429
    • /
    • 2003
  • This paper proposes a swing-arm type dual-stage actuator, which consists of a PZT actuator for fine motion and a VCM(Voice Coil Motor) for coarse motion, for SFF ODD(Small Form Factor Optical Disk Drive), in order to achieve fast access speed and precise track following control. We focus our attention on the design and control of the PZT actuator, because there have been a lot of previous researches related to the VCM and dual-stage actuators. Due to the dual cantilever structure, the PZT actuator can generate precise translational tracking motion at its tip where optical pickup is attached at, and the effect of hysteric behavior of the PZT element is reduced. The dynamic model of the PZT actuator is derived by using the Hamilton's principle, and verified by comparing with the experimental frequency response. The sliding mode control is designed in order to be robust against modeling uncertainties. Simulations and experimental results confirm the effectiveness of the suggested control scheme.

  • PDF