• 제목/요약/키워드: Small Fan

검색결과 246건 처리시간 0.027초

서버용 냉각팬의 유동 및 소음 특성 분석에 관한 연구 (Study on the flow and noise characteristic analysis for cooling fan in a server computer)

  • 임태균;전완호;홍현기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.773-778
    • /
    • 2014
  • Recently both high performance and low noise for a cooling fan used in a server computer have been required. In this study, we measured the noise characteristics for a small cooling fan used in a computer or in a server, and compared the computational data to measured ones. SC/Tetra V10 and FlowNoise V4.3 was used for the unsteady flow field and the aeroacoustic analysis, respectively. The aeroacoustic analysis results have the good agreement with measured data within 3% errors in overall SPL. In the noise spectrum, we could find the peak tonal noise at lower frequency than 1st BPF, and confirm that the reason is caused by the asymmetry of bell mouth shape.

  • PDF

ATmega128 마이크로 컨트롤러를 사용한 스마트 선풍기 속도제어 (Speed Control of Smart Electric Fan using ATmega128 Microcontroller)

  • 원재혁;김정운;이성준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.281-283
    • /
    • 2009
  • This paper presents the smart fan which is operated by a small conventional motor and an ultrasonic sensor. The smart fan generates cool wind with regulated speed of wing by the distance between the user and the fan. In this research, an 8-bit microcontroller (ATmega128) and an ultrasonic sensor (NT-TS601) are utilized for the system control and sensing information. In order to obtain the speed information from the encoderless DC motor, a stroboscope is used, which provides the voltage variation by the motor speed. The proposed smart fan makes the user feel cool, convenient and safe at a low cost.

  • PDF

최대유량역에서 소형 축류 홴의 3차원 난류유동 특성에 관한 연구 (A Study on the Three-Dimensional Turbulent Flour Characteristics of a Small-sized Axial Fan at the Maximum Flowrate Region)

  • 김장권
    • 동력기계공학회지
    • /
    • 제4권3호
    • /
    • pp.25-33
    • /
    • 2000
  • This study represents three-dimensional turbulent flow characteristics around an axial fan measured at the operating point ${\varphi}=0.32$, which is equivalent to the maximum flowrate region, by using three-dimensional fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSA's, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fog is used for laser particles in this study. Mean velocity profiles around an axial fan along the downstream radial distance show that the streamwise and the tangential components exist as a predominant velocity and have the maximum value at the radial distance ratio 0.8, while the radial component has a small scale distribution and its flow direction is inward except a part of blade tip. The turbulent intensity profiles show that the radial component exists the most greatly. And also the turbulent kinetic energy shows about 60% as a maximum value at the radial distance ratio 0.9. Moreover, the Reynolds shear stresses do not exist at upstream flow, but the streamwise and the radial components of them show about 20% as a maximum value at the radial distance ratio 0.9 at downstream flow.

  • PDF

주거환기용 시로코홴의 내부모터 형상에 따른 공력특성 연구 (A STUDY ON AERODYNAMIC CHARACTERISTICS DEPENDING ON SHAPE OF AN INTERNAL MOTOR IN A SIROCCO FAN FOR RESIDENTIAL VENTILATION)

  • 차경훈;김진혁;김광용
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.1-6
    • /
    • 2011
  • Aerodynamic characteristics depending on the shape of an internal motor in a small-size sirocco fan for residential ventilation have been investigated. For the aerodynamic analyses of the sirocco fan, three-dimensional Reynolds-averaged Navier-Stokes equations are solved with the shear stress transport model for turbulence closure. The flow analyses are performed on hexahedral grids using a finite-volume solver. The validation of the numerical results at steady-state is performed by comparing with experimental data for the pressure and efficiency. In order to investigate the aerodynamic characteristics depending on shape of an internal motor in a sirocco fan, the reference shape is analyzed compared to the case without internal motor. Additionally, two shape parameters, height and width of the internal motor in a sirocco fan, are tested to investigate their effects on the aerodynamic characteristics. The results show that the shape of the internal motor in a sirocco fan is an important factor to improve the aerodynamic performances.

주거환기용 시로코홴의 내부모터 형상에 따른 공력특성 연구 (A STUDY ON AERODYNAMIC CHARACTERISTICS DEPENDING ON SHAPE OF AN INTERNAL MOTOR IN A SIROCCO FAN FOR RESIDENTIAL VENTILATION)

  • 차경훈;김진혁;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.321-326
    • /
    • 2011
  • Aerodynamic characteristics depending on the shape of an internal motor in a small-size sirocco fan for residential ventilation have been investigated For the aerodynamic analyses of the sirocco fan, three-dimensional Reynolds-averaged Navier-Stokes equations are solved with the shear stress transport model for turbulence closure. The flaw analyses are performed on hexahedral grids using a finite-volume solver. The validation of the numerical results at steady-state is performed by comparing with experimental data for the pressure and efficiency. In order to investigate the aerodynamic characteristics depending on shape of an internal motor in a sirocco fan, the reference shape is analyzed compared to the case without internal motor. Additionally, two shape parameters, height and width of the internal motor in a sirocco fan, are tested to investigate their effects on the aerodynamic characteristics. The results show that the shape of the internal motor in a sirocco fan is an important factor to improve the aerodynamic performances.

  • PDF

청소기용 터보홴의 비정상 유동장 및 공력소음 해석 (An Analysis of the Unsteady Flow-Field and Aerodynamic Sound of a Turbo Fan used in a Vacuum Cleaner)

  • 전완호;김창준;류호선
    • 한국유체기계학회 논문집
    • /
    • 제5권2호
    • /
    • pp.36-42
    • /
    • 2002
  • A new method to calculate the aeroacoustic pressure of a centrifugal fan that is used in a vacuum cleaner has been developed. The centrifugal fan consists of the impeller, the diffuser, and the circular casing. Due to the high rotating speed of the impeller and the small gap distance between the impeller and diffuser, the centrifugal fan makes very high noise levels at BPF and its harmonic frequencies. In order to calculate the sound pressure of a centrifugal fan, the unsteady flow field data is needed. This unsteady flow field is calculated by the vortex method. The sound pressure is then calculated by acoustic analogy. In this paper, only dipole term is considered in the equation. The noise generated by moving impeller and stationary diffuser is calculated separately. The predicted acoustic pressures agree very well with the measured data. The difference between the two is less than 4dB

장대형 터널 내 제트 팬 위치에 따른 환기해석 (Ventilation Analysis according to Jet Fan Location in Long Tunnel)

  • 강신형;변주석;이진호
    • 설비공학논문집
    • /
    • 제19권5호
    • /
    • pp.386-393
    • /
    • 2007
  • This paper studies the ventilation characteristics according to the jet fan location at the long road tunnel using the CFD software 'FLUENT' which is based on the finite volume method. The tunnel model used in the analysis has a length of 1600m, a cross sectional area of $120m^3$, and is composed of 3 lanes and one way. The velocity profile, the distribution of CO concentration and the ventilation flow rate within the tunnel are analyzed, respectively. In the analysis, it is found that the dependence of the ventilation flow rate upon the jet fan location is small, but the CO concentration in the tunnel is at the lowest when the jet fans are installed near the tunnel outlet. An air stream right below the jet fan is almost inactive due to the strong stream injection near the jet fan. Thus, the pollution level below the jet fan must be higher than the other area.

충돌분류에 의해 형성된 Spray fan의 간섭효과에 관한 연구 (A Study of Interaction Effect from Spray Fan Formed by Impinging Jets)

  • 한재섭;김선진;문덕용;김유
    • 한국추진공학회지
    • /
    • 제3권3호
    • /
    • pp.9-15
    • /
    • 1999
  • 대형로켓엔진을 개발하기 위한 Injector 설계에서 연합된 분무군에 대한 해석은 필수적이다. 본 연구에 서는 운동량이 같은 두 개의 분류가 충돌함으로서 생기는 두 스프레이의 간섭이 질량분포와 액적의 크기/속도분포에 미치는 영향을 조사하였다. 질량채집장치와 PDPA가 실험장치로 사용되었고 물을 실험유체로 사용하였다. 두 스프레이 휀의 운동량비가 1인 경우 두 스프레이 휀의 충돌로 인한 간섭의 영향은 아주 작았다. 마찬가지로 액적의 속도/크기분포도 두 스프레이 휀의 충돌로 인한 간섭영향은 아주 작았으나, 액적의 크기는 2차 충돌로 인하여 충돌점 부근에서 약간 작아졌다. 즉, 추후에 운동량비가 동일한 두 스프레이 휀을 가진 인젝터에 대한 연구시에는 간섭효과를 무시할 수 있음을 알 수 있었다.

  • PDF

대규모 와 모사에 의한 3차원 소형축류홴의 운전부하에 따른 난류유동 특성치 고찰 (An Investigation on Turbulent Flow Characteristics According to the Operating Loads of Three-Dimensional Small-Size Axial Fan by Large Eddy Simulation)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제20권1호
    • /
    • pp.50-56
    • /
    • 2016
  • This paper handled an investigation on the turbulent flow characteristics of three-dimensional small-size axial fan(SSAF) according to operating loads. Also, it was carried out by unsteady-state, incompressible and three-dimensional large eddy simulation(LES). The downstream flow type of SSAF is changed from axial flow to radial flow around the beginning of stall region at the aerodynamic performance curve. Axial mean velocity component largely grows around blade tip at the operating point of A to D, but transverse and vertical mean velocity components as well as Reynolds shear stresses highly develop around blade tip at the operating point of E to H. On the other hand, the peak value of turbulent kinetic energy developed around blade tip shows the highest at the operating point of E.

벨마우스 깊이가 다른 3차원 소형축류홴의 공력특성에 대한 대규모 와 모사 (Large Eddy Simulation on the Aerodynamic Performance of Three-Dimensional Small-Size Axial Fan with the Different Depth of Bellmouth)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제19권6호
    • /
    • pp.19-25
    • /
    • 2015
  • The unsteady-state, incompressible and three-dimensional large eddy simulation(LES) was carried out to analyze the aerodynamic performance of three-dimensional small-size axial fan(SSAF) with the different depth of bellmouth. The static pressure coefficients analyzed by LES predict a little bit larger than measurements except stall region regardless of the installation depth between SSAF and bellmouth. Moreover, static pressure efficiencies analyzed by LES show about maximum 30% at the actual operating point ranges, but measurements do not. Therefore, if the blades of conventional SSAF have some more rigidity and complete dynamic balance, the aerodynamic performance of SSAF will be some more improved. In consequence, LES shows the best prediction performance in comparison with any other Reynolds averaged Navier-Stokes(RANS) method.