• 제목/요약/키워드: Small Emission Chamber

Search Result 81, Processing Time 0.025 seconds

Simulative consideration for w-shaped d.i. diesel combustion chamber system using spray wall impaction (분무충돌을 이용한 w-형 직접분사식 디젤연소실에 대한 계산적 고찰)

  • Park, K.
    • Journal of ILASS-Korea
    • /
    • v.2 no.2
    • /
    • pp.8-15
    • /
    • 1997
  • Combustion chamber systems using spray impinged on walls have been studied for improving combustion characteristics in high speed direct injection diesel engines. The fuel spray injected in a small combustion chamber may be easily impinged and deposited on the wall. The fuel deposit has been considered as the cause for unburned emission due to difficulty of fuel-air mixing. In this paper w-shaped combustion chamber which has four raised pips on the side wall is introduced and discussed by comparing with conventional chamber with no pips. The computer code employing new spray-wall interaction model in general non-orthogonal grids is used in here. The model is applied into the new chamber shape with raised pips. In this chamber system four-hole nozzle is used, and the sprays injected from the each hole impact on lands raised from the chamber wall surface. After impacting, the sprays break up into much smaller drops and distribute over all the chamber space, instead of distributing just near the wall surface in conventional omega-shape. The results showed the potential of the w-shaped chamber employing pips for dispersing droplets so as tn avoid the fuel deposit regions.

  • PDF

A Prediction Model for TVOC and HCHO Emission of Paint Materials (페인트에서 방출되는 TVOC 및 HCHO 방출량 예측모델)

  • Kim, Hyung-Soo;Lee, Kyung-Hoi
    • KIEAE Journal
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2003
  • It is highly recognized that there is need for protection against indoor air pollution, as we realize environmental pollution is growing, For example, in an indoor environment, a person spends more than 80 percent of their time inside the building. Thus, concern about indoor decoration materials is growing, since they cause pollution in the rooms of an apartment, as well as in offices. As the indoor decoration materials become more diverse and lusurious, so the effect of VOCs(Volatile Organic Compounds) and HCHO(Formaldehy) is growing. The indoor decoration materials cause the Sick Building Syndrome, such as headaches, dizziness, or lack of concentraion, and they in turn cause serious deterioration in people's health. In this study, I probed the status of the indoor air pollution and carried on an investigation and analysis about the prevention technique. In doing so, I performed experimental tests and an assessment of the indoor decoration materials of an apartment. I also examined elements of the emitted and the emission. Finally, I examined the character of emissions, by changing environmental conditions, such as the temperature, humidity, and ventilation. With respect to VOCs tests, I applied the method of solid state adsorption using the adsorptive tube, based on the measurement of the American EPA TO-17, ASTM 5116-97, and the measurement of the Japanese Wall Decoration Industrial Association. The tested sample was analyzed by High Performance Liquid Chromatography, after going through the process of dissolvent extraction. As subjects of the test, Paint were selected. The process of this test is as follows; first, I figured out the character of the emission, by measuring the emitted concentration of VOCs and HOHC from the indoor decoration materials of an apartment. Second, I made a small-scale chamber and the test was processed in the chamber in order to suggest an environment-friendly prediction modlel development.

Development of the evaluation equipment for the prominent discrete tone radiated by acoustic emission products in mass production (대량생산용 음향방출제품의 돌출음 평가장비 개발)

  • Lee, Yong-Kwan;Kim, Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.76-81
    • /
    • 2012
  • In-process evaluation equipment for the prominent discrete tone (PDT) emitted by small motors or actuators such as HDD(Hard Disk Driver), ODD(Optical Disk Driver) or linear motors has been developed and estimated on the basis of Prominence Ratio (PR) method in ECMA 74. Correlation of the evaluation equipment was performed in comparison with the method by ECMA 74 in anechoic chamber. Coherent function between two systems was applied in order to compensate traceability of ECMA 74 in anechoic chamber. Usability of the developed system with estimated Gage R&R shall be approved with real samples in the mass production line.

  • PDF

Characteristics of pollutant emission from wallpapers - Around TVOC and HCHO - (벽지에서 발생되는 오염물질 방출특성 - TVOC와 HCHO를 중심으로 -)

  • Jang, Seong-Ki;Kim, Mi-Hyun;Lee, Hong-Suk;Lim, Jun-Ho;Jang, Mee;Seo, Soo-Yun
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.542-551
    • /
    • 2005
  • This study is to investigate the characteristics of emission concentration according to wallpaper sort and emission time using small chamber method. The target compounds included 45 VOCs and formaldehyde, which were respectively determined by adsorption sampling and thermal desorption coupled with GC/MS method, and by sampling in DNPH cartridge and HPLC method. The emission factor of TVOC and HCHO was detected to $1.1mg/m^2{\cdot}h$ and $0.01mg/m^2{\cdot}h$ respectively, and the wallpapers of 25 satisfied emission standard. TVOC emission factor appeared in order of the concentration of PVC, natural, and Non-PVC wallpaper, while HCHO was detected very low concentration without relation to wallpaper sort. The paraffin hydrocarbons appeared to be the most contributable class of hydrocarbons in terms of their concentrations, followed by aromatics, and olefins, halogenated hydrocarbons was not detected. PVC wallpapers plentifully emitted TVOC above other wallpapers, and toluene was showed higher concentration of 10 times than natural wallpaper. In addition to, emission factor according to elapse was gradually decreased.

Optimizing Cleaning Period of Oxide Etcher Using Optical Emission Spectroscopy (광방출 분석법을 이용한 산화물 식각 장비의 세정 주기 최적화)

  • Son, Gil-Su;Roh, Yong-Han;Yeom, Geun-Young;Kim, Su-Hong;Kim, Myoung-Woon;Cho, Hyung-Chul
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.416-421
    • /
    • 2011
  • In this paper, the relationship of chamber contamination and the intensity change of specific wavelength was investigated. "diff_CO" formula was introduced to rule out background noise caused by external conditions and to detect when the polymer is removed from the chamber. As RF time increased, diff_CO trend showed the decrease of the maximum peak and increased number of small intensity peaks. From the diff_CO change, it was possible to determine when the chamber needs to be cleaned without opening the chamber.

Comparison and Optimization of Flux Chamber Methods of Methane Emissions from Landfill Surface Area (매립지 표면의 메탄 발산량 실측을 위한 플럭스 챔버의 방법론적 비교와 최적화)

  • Jeong, Jin Hee;Kang, Su Ji;Lim, Jong Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.535-542
    • /
    • 2016
  • As one of the most cost-effective methods for surface emission measurements, flux chamber method has been used worldwide. It can be classified into two types: SFC (with slope method) and DFC (with steady-state method). SFC (static flux chamber) type needs only simple equipment and is easy to handle. However, the value of flux might vary with SFC method, because it assumes that the change of concentration in chamber is linear with time. Although more specific equipments are required for DFC (dynamic flux chamber) method, it can lead to a constant result without any ambiguity. We made a self-designed DFC using a small and compact kit, which recorded good sample homogeneity (RSD < 5%) and recovery ( > 90%). Relative expanded measurement uncertainty of this improved DFC method was 7.37%, which mainly came from uncontrolled sweep air. The study shows that the improved DFC method can be used to collect highly reliable emission data from large landfill area.

The Determination of Diffusion and Partition Coefficients of PUF (폴리우레탄 폼의 휘발성 유기화합물 확산 및 분배계수 산정)

  • Park, Jin-Soo;Little, John C.;Kim, Shin-Do;Lee, Hee-Kwan;Kong, Boo-Ju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.77-84
    • /
    • 2010
  • The diffusion and partition coefficients of polyurethane foam (PUF) are estimated using a microbalance experiment and small chamber test. The microbalance is used to measure sorption/desorption kinetics and equilibrium data. When the diffusion condition is controlled in the chamber of the sample, interactions between volatile organic compounds (VOCs) and PUF can lead to the estimation of a relatively homogenous rate of mass transfer in the interiors and surfaces of PUF. The estimates of the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) are shown to be independent of the concentrations of VOCs. This approach, if applied to a diffusion-controlled or physically-based model, can facilitate more precise prediction of their source/sink behavior. Although further research and more rigorous validation is needed, an emission model applied with the diffusion and partition coefficients from this research holds promise for the improvement of reliability in predicting the behavior of VOCs emitted from porous building materials by D and K.

Tightness of specimen sealing box in 20 L test chamber to evaluate building materials emitting pollutants (건축자재에서 방출되는 오염물질 평가 시 사용되는 20 L 시험챔버 시편홀더의 기밀성 개선)

  • Shin, Woo Jin;Lee, Chul Won;Kim, Man Goo
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.261-267
    • /
    • 2007
  • The 20 L small chamber test method is to evaluate pollutants such as TVOC, formaldehyde emitted from building materials. This method was only designed to evaluate the surface emission of sample exposed in the chamber. In this method, building materials cut with a fixed standard size are fixed in a sample sealing box. The sample sealing box is put into the 20 L test chamber. This chamber is ventilated at a standard air change rate with purified air for 7 days then the sample from the chamber is collected and analyzed to measure the emission rate of TVOC and formaldehyde. In this method, however, if the sealing box does not guarantee airtightness, accurate evaluation for the building materials can not be achieved due to the pollutants emitted from edge of the sample so called, edge effect. This edge effect can be much greater when evaluating panels such as plywood, flooring due to their surface treatment. In this study, flooring was tested to check airtightness of the sample sealing box with analytic results between 1L and 20 L test chamber. Furniture materials like LPM coated one side surface treatment and MDF coated both sides surface treatment with LPM were tested to identify whether the improvement of the sample sealing box airtightness is possible with the comparison between existing and improved test method that low VOC emission tape was used to seal the sample edge. After 7 days, MDF TVOC emission rate was different according to the existence and nonexistence of tape. The emission rate of the existing test method was $0.009mg/m^2h$ and that of improved test method was $0.003mg/m^2h$. Relative standard deviation for the existing test method was $0.004mg/m^2h$ and relative standard deviation for the improved test method was $0.002mg/m^2h$ when the same sample was analyzed three times. The improved test method in this study using low VOC emission tape was effective and able to reduce the heterogeneous effect of the edge from the sample sealing box.

Measurement of Air Contaminants Emission from Interior Finish Material (실내 건축 마감자재의 공기오염물질 방출량 분석)

  • Kim, Yun-Deok;Lim, Soo-Young
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.14 no.1
    • /
    • pp.58-65
    • /
    • 2007
  • For the moderns who spend more than 80% of the time inside a building, interior environment became important since it directly affects their health. Recently as noxiousness of the air contaminants of the interior space stood out as well as the above trend, the Ministry of Environment enacted a lawto maintain the interior air quality at certain level of standard in the multi use facility and newly constructed apartment. To make the indoor air clean, removal technology of various contaminants should be developed and interior materials with chemical treatment should be restrained. In other words, selection of interior finish affects indoor air quality from the initial design stage to the construction stage. However, only limited contaminants emission data of building materials are supplied by related companies. There is no average contaminants emission data for overall materials. Moreover, high cost and equipments for one time measurement of VOCs emission of interior finish are the obstacles of active research and data measurement. Therefore, this paper searched the current condition of average VOCs & HCHO emission of various interior finish based on the study requested to research center from the building material company through Stands Test Method for Indoor Air Quality.

Emission Characteristics of Volatile Organic Compounds (VOCs) from a Carpet (카페트에서 방출되는 VOCs의 방출특성)

  • 신동민;김창녕;김동술
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.40-49
    • /
    • 2003
  • This study has been conducted to identify and quantify the emissions of Volatile Organic Compounds (VOCs) from a new carpet. The carpet sample consists of polypropylene cushion and latex backing. The VOCs have been sampled on sorbent tubes and analyzed by thermal desorption unit and GC/MSD. For over 240 hours, concentration of VOCs has been measured in a small chamber made of stainless steel. With the measured data, emission factor and mass balance have been considered. The experiments have been conducted in accordance with ASTM D5116-97. The carpet has emitted a variety of VOCs, but in this study, 7 VOCs compounds have been considered: chlorobenzene, ethylbenzene, styrene, isopropylbenzene, bromobenzene, 2-chlorotoluene, and 1,2,3-trimethylbenzene. The results show that the concentrations of VOCs and the emission factors have exponentially decayed from relatively high level to low level with time. The gradients of the concentration of VOCs and emission factors are different for various components. It is found that styrene, 2-chlorotoluene are emitted more than others with higher concentrations.