• Title/Summary/Keyword: Small Diesel Engine

Search Result 212, Processing Time 0.017 seconds

A Study of Multi Hull Form Design for Small Leisure Fishing Vessels (소형 레저어선의 다동체 선형설계 연구)

  • Lee Seung-Hee;Lee Young-Gill;Kang Dae-Sun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.98-108
    • /
    • 2006
  • The vessels, already built and is operating in Korea, have the hull form of catamaran, with LOA(Length Over All) 15 m, LBP(Length Between Perpendiculars) 12 m, GT(Gross Tonnage) 9.77ton, Light Load Displacement 15.1ton. Korean Society of Ship Inspection & Technology, Chungnam National University, Inha University, Seoul National University and Advance Marine Tech co. ltd developed by cooperation it for fishing vessels. And it used FRP(Fiber Reinforced Plastics) for hull material and main engine of diesel $360ps{\times}2800rpm{\times}2sets$ with a water jet system. Based on these results, this paper describe small leisure fishing vessels with multi-hull, in relation to the project of CTYS(Regional Reserch Center for Transportation System of Yellow Sea Inha University) that aimed to development of trimaran hull form(LOA=17m, LBP=14m(Side Hull=6m), GT=9.77ton, Light Weight=11.2 ton).

  • PDF

Effects of Precombustion Chamber Shape on the Start ability of Small Diesel Engine under the Cold Weather (소형(小型) 디젤엔진의 예연소실(豫燃焼室) 형상(形狀)이 냉시동성(冷始動性)에 미치는 영향(影響)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Moon, Gyeh Song;Kim, Yong Whan;Lee, Seung Kyu
    • Journal of Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.9-19
    • /
    • 1982
  • The aim of this study was to improve the startability of the diesel engine at low temperature. The specific objective was to determine the optimum type of precombustion chamber. The eight different types of precombustion chamber and two different types of the cylinder head were designed and tested by $2^7$ factorial experiments with four replications. The lowest starting temperature for first operation, the maximum output, and the specific fuel consumption at full load and overload were checked and analyzed. The results of the study are summarized as follows; 1. The lowest starting temperature was lowered as much as $2.4^{\circ}C$ and the maximum output was increased as much as 0.3 ps with respect to the difference in the relative angle of the main passageway against the piston head from 20 degree to 18 degree. 2. The lowest starting temperature and the maximum out-put were lowered as much as $3.3^{\circ}C$ and 0.3 ps respectively with respect to the difference in the angle of the cylinder head groove from 20 degree to 18 degree. 3. The lowest starting temperature and the maximum out put were lowered as much as $2^{\circ}C$ and 0.2 ps respectively with respect to the difference in the length of the precombustion chamber from 17.5 mm to 15.5mm. 4. There was no significant difference in the startability but the maximum output was increased as much as 0.2 ps with respect to the difference in the diameter of the main passageway from 4.8mm to 4.5mm. 5. The lowest starting temperature was obtained under the condition at 47 degree in the angle of the main passageway and at 18 degree in the angle of the cylinder head groove. The maximum output and the minimum specific fuel consumption was obtained under the condition at 4.5mm in the diameter of the main passageway and at 17.5mm in the length of the precombustion chamber. 6. The angle of the cylinder head groove and the main passageway appeared to the major factors affecting the startability significantly. The interaction between the diameter of the main pass ageway and the length of the precombustion chamber had an significant influence on the maximum output. So it would be recommended to study further on the interaction between two factors mentioned above by expanding their levels. 7. The optimum condition suggested by this study could lower the starting temperature by $6^{\circ}C$ compared to the conventional precombustion chambers.

  • PDF