• Title/Summary/Keyword: Slush nitrogen (SN2)

Search Result 4, Processing Time 0.018 seconds

Effects of various combinations of cryoprotectants and cooling speed on the survival and further development of mouse oocytes after vitrification

  • Cha, Soo-Kyung;Kim, Bo-Yeun;Kim, Mi-Kyung;Kim, You-Shin;Lee, Woo-Sik;Yoon, Tae-Ki;Lee, Dong-Ryul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • Objective: The objectives of this study were to analyze efficacy of immature and mature mouse oocytes after vitrification and warming by applying various combinations of cryoprotectants (CPAs) and/or super-rapid cooling using slush nitrogen ($SN_2$). Methods: Four-week old ICR female mice were superovulated for GV- and MII-stage oocytes. Experimental groups were divided into two groups. Ethylene glycol (EG) only group: pre-equilibrated with 1.5 M EG for 2.5 minutes and then equilibrated with 5.5 M EG and 1.0 M sucrose for 20 seconds. EG+dimethylsulfoxide (DMSO) group: pre-equilibrated with 1.3 M EG+1.1 M DMSO for 2.5 minutes and equilibrated with 2.7 M EG+2.1 M DMSO+0.5 M sucrose for 20 seconds. The oocytes were loaded onto grids and plunged into $SN_2$or liquid nitrogen ($LN_2$). Stored oocytes were warmed by a five-step method, and then their survival, maturation, cleavage, and developmental rates were observed. Results: The EG only and EG+DMSO groups showed no significant difference in survival of immature oocytes vitrified after warming. However, maturation and cleavage rates after conventional insemination were greater in the EG only group than in the EG+DMSO group. In mature oocytes, survival, cleavage, and blastocyst formation rates after warming showed no significant difference when EG only or EG+DMSO was applied. Furthermore, cleavage and blastocyst formation rates of MII oocytes vitrified using $SN_2$ were increased in both the EG only and EG+DMSO groups. Conclusion: A combination of CPAs in oocyte cryopreservation could be formulated according to the oocyte stage. In addition, $SN_2$ may improve the efficiency of vitrification by reducing cryoinjury.

Effect on Survival and Developmental Competence of Vitrified Mouse Embryos Using Various Cryoprotectants and Cooling Speeds (생쥐 배아의 유리화 동결에 동결액의 조성과 냉각속도의 영향)

  • Park, Jae-Kyun;Go, Young-Eun;Eum, Jin-Hee;Won, Hyung-Jae;Lee, Woo-Sik;Yoon, Tae-Ki;Lee, Dong-Ryul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.4
    • /
    • pp.307-319
    • /
    • 2010
  • Objective: Vitrification requires a high concentration of cyroprotectant (CPA) and an elevated cooling speed to avoid ice crystal formation. We have evaluated the effect of different combinations of cooling rate and CPA on embryonic integrity (developmental competence) in order to increase the efficiency of vitrification without impairing embryo viabilit. We hypothesized that the combination of CPA or the increase of cooling rates can reduce the concentration of toxic CPA for vitrification. As consequently, we performed experiments to evaluate the effect of various composition of CPA or slush nitrogen ($SN_2$) on the mouse embryonic development following vitrification using low CPA concentration. Methods: Vitrification of mouse embryos was performed with EM grid using liquid nitrogen ($LN_2$) or $SN_2$ and different composition of CPAs, ethylene glycol (EG) and dimethylsulfoxide (DMSO). After vitrification-warming process, their survival and blastocyst formation rates were examined. For analyzing long-term effect, these blastocysts were transferred into the uterus of foster mothers. Results: Survival and blastocyst formation rates of vitrified embryos were higher in EG+DMSO group than those in EG only. Furthermor, the group using $SN_2$ with a lower CPA concentration showed a higher survival of embryos and developmental rates than group using $LN_2$. Conclusion: The combination of EG and DMSO as CPAs may enhance the survival of mouse embryos and further embryonic development after vitrification. $SN_2$ can generate high survival and developmental rate of vitrified/warmed mouse embryos when a lower concentration of CPA was applied. Therefore, these systems may contribute in the improvement of cryopreservation for fertility preservation.