• Title/Summary/Keyword: Slurry particle size

Search Result 174, Processing Time 0.03 seconds

A Study on Recycle of Abrasive Particles in One-used Chemical Mechanical Polishing (CMP) Slurry (산화막 CMP 슬러리의 연마 입자 재활용에 관한 연구)

  • Park, Sung-Woo;Seo, Yong-Jin;Kim, Gi-Uk;Choi, Woon-Sik;Kim, Chul-Bok;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.145-148
    • /
    • 2003
  • Recently, the recycle of CMP (chemical mechanical polishing) slurries have been positively considered in order to reduce the high COO (cost of ownership) and COC (cost of consumables) in CMP process. Among the composition of slurries (buffer solution, bulk solution, abrasive particle, oxidizer, inhibitor, suspension, antifoaming agent, dispersion agent), the abrasive particles are one of the most important components. Especially, the abrasive particles of slurry are needed in order to achieve a good removal rate. However, the cost of abrasives, is still very high. In this paper, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we have studied the possibility of recycle of reused silica abrasive through the analysis of particle size and hardness. Also, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slury, As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF

Chemical Mechanical Polishing Characteristics of Mixed Abrasive Silica Slurry (MAS) by adding of Manganese oxide (MnO2) Abrasive (산화망간이 첨가된 혼합 연마제 실리카 슬러리의 산화막 CMP 특성)

  • Seo, Yong-Jin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1175-1181
    • /
    • 2019
  • In this paper, we have studied the chemical mechanical polishing(CMP) characteristics of mixed abrasive silica slurry(MAS) retreated by adding of manganese oxide(MnO2) abrasives within 1:10 diluted silica slurry. A slurry designed for optimal performance should produce high removal rates, acceptable polishing selectivity with respect to the underlying layer, low surface defects after polishing, and good slurry stability. The polishing performances of MnO2 abrasive-added MAS are evaluated with respect to their particle size distribution, surface morphology, and CMP performances such as removal rate and non-uniformity. As an experimental result, we obtained the comparable slurry characteristics compared to original silica slurry in the view-point of high removal rate and low non-uniformity. Therefore, our proposed MnO2-MAS can be useful to save on the high cost of slurry consumption since we used a 1:10 diluted silica slurry.

A Study of Electrochemical Characteristics on Copper Film (Copper 막의 전기화학적 특성에 관한 연구)

  • Han, Sang-Jun;Park, Sung-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.603-604
    • /
    • 2006
  • We investigated the effects of oxidizer additive on the performance of Cu-CMP process using commonly used tungsten slurry. According to the CMP removal rates and particle size distribution, and the micro- structures of surface layer as a function of oxidizer contents were greatly influenced by the slurry chemical composition of oxidizers. The difference in removal rate and roughness of copper surface are believed to cause by modification in the mechanical behavior of $Al_{2}O_3$ abrasive particles in CMP slurry.

  • PDF

A Study of Electrochemical Characteristics on Copper Film (Copper 막의 전기화학적 특성에 관한 연구)

  • Han, Sang-Jun;Park, Sung-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1269-1270
    • /
    • 2006
  • We investigated the effects of oxidizer additive on the performance of Cu-CMP process using commonly used tungsten slurry. According to the CMP removal rates and particle size distribution, and the micro-structures of surface layer as a function of oxidizer contents were greatly influenced by the slurry chemical composition of oxidizers. The difference in removal rate and roughness of copper surface are believed to cause by modification in the mechanical behavior of $Al_2O_3$ abrasive particles in CMP slurry.

  • PDF

A Study of Electrochemical Characteristics on Copper Film (Copper 막의 전기화학적 특성에 관한 연구)

  • Han, Sang-Jun;Park, Sung-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1729-1730
    • /
    • 2006
  • We investigated the effects of oxidizer additive on the performance of Cu-CMP process using commonly used tungsten slurry. According to the CMP removal rates and particle size distribution, and the micro-structures of surface layer as a function of oxidizer contents were greatly influenced by the slurry chemical composition of oxidizers. The difference in removal rate and roughness of copper surface are believed to cause by modification in the mechanical behavior of $Al_{2}O_{3}$ abrasive particles in CMP slurry.

  • PDF

Improvement of Defect Density by Slurry Fitter Installation in the CMP Process (CMP 공정에서 슬러리 필터설치에 따른 결함 밀도 개선)

  • Kim, Chul-Bok;Seo, Yong-Jin;Seo, Sang-Yong;Lee, Woo-Sun;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.30-33
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectrics, which can apply to employed in integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of free-defects in inter-level dielectrics (ILD). Especially, defects like micro-scratch lead to severe circuit failure, and affects yield. CMP slurries can contain particles exceeding $1{\mu}m$ size, which could cause micro-scratch on the wafer surface. The large particles in these slurries may be caused by particle agglomeration in slurry supply line. To reduce these defects, slurry filtration method has been recommended in oxide CMP. In this work, we have studied the effects of filtration and the defect trend as a function of polished wafer count using various filters in inter-metal dielectric(IMD)-CMP. The filter installation in CMP polisher could reduce defect after IMD-CMP. As a result of micro-scratches formation, it shows that slurry filter plays an important role in determining consumable pad lifetime.

  • PDF

Comparison of the Viscosity of Ceramic Slurries using a Rotational Rheometer and a Vibrational Viscometer (회전형 레오미터와 진동형 점도계를 이용한 세라믹 슬러리의 점도 비교)

  • Ji, Hye;Lim, Hyung Mi;Chang, Young-Wook;Lee, Heesoo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.542-548
    • /
    • 2012
  • The viscosity of a ceramic slurry depends on the slurry concentration, particle shape and size, hydrodynamic interactions, temperature, shear rate, pre-treatment condition and the method of measurement with the selected equipment. Representative ceramic slurries with low to high viscosity levels are selected from colloidal silica, barium titanate slurry and glass frit paste. Rotational rheometers and vibrational viscometers are used to compare the measured viscosity for various ceramic slurries. The rotational rheometer measured the viscosity according to the change of the shear rate or the rotational speed. On the other hand, the vibrational viscometer measured one point of the viscosity in a fixed vibrational mode. The rotational rheometer allows the measurement of the viscosity of a ceramic paste with a viscosity higher than 100,000 cP, while the vibrational viscometer provides an easy and quick method to measure the viscosity without deformation of the ceramic slurry due to the measurement method. It is necessary to select suitable equipment with which to measure the viscosity depending on the purpose of the measurement.

Synthesis of Ultrafine Calcium Carbonate powders by nozzle Spouting Method (분사법에 의한 초미립 경질 탄산 칼슘 분말의 합성)

  • Ahn, Ji-Whan;Park, Charn-Hoon;Kim, Jeong-Heo;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1276-1284
    • /
    • 1996
  • Ultrafine calcim carbonate powders with the size of 0.05~0.1 ${\mu}{\textrm}{m}$ and the calcite phase were prepared by the nozzle spouting method which was conducted by spouting calcium hydroxide slurry in reactor filled with CO2 gas. Well dispersed ultra-fine particles were synthesized in condition of high Ca(OH)2 concentration of the slurry ( 0.5wt%) synthesized calcium carbonate powder was shown the large particle size with agglo-meration.

  • PDF

Effect of Methane Production from Pig Manure Slurry According to The Solids Concentration and The Crushing Solids of Pig Manure Slurry (돼지분뇨 슬러리중의 고형물 농도수준과 분쇄 처리가 메탄 생성에 미치는 효과)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Lee, Dong-Jun;Lee, Dong-Hyun;Cho, Won-Mo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.74-85
    • /
    • 2015
  • Recently, the number of anaerobic digestion facility for livestock manure is on the rise in Korea. All of the livestock manure anaerobic digestion facilities in operation use pig manure slurry as a substrate for anaerobic digestion. Generally, pig manure slurry is composed of 97% water and 3% solids. The particulate matter, such as corn in the form of particles that is undigested by pig is contained in the pig manure slurry. Particulate matter is a factor reducing the effectiveness of biogas production in the anaerobic digestion process. In this study, mechanical grinding treatment was applied to analyze the effect of methane production from pig manure slurry by reducing the particle size of the slurry. On the other hand, the effect of the solid concentration levels on methane production and methane content of the biogas was analyzed. The fine particle concentration in the pig manure slurry was increased by the mechanical grinding treatment. And methane production and methane content of the biogas were higher in grinded pig manure slurry than untreated raw slurry.