• Title/Summary/Keyword: Slurry method

Search Result 478, Processing Time 0.024 seconds

Determination of Properties of Ionomer Binder Using a Porous Plug Model for Preparation of Electrodes of Membrane-Electrode Assemblies for Polymer Electrolyte Fuel Cells

  • Park, Jin-Soo;Park, Seok-Hee;Park, Gu-Gon;Lee, Won-Yong;Kim, Chang-Soo;Moon, Seung-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.295-300
    • /
    • 2007
  • A new characterization method using a porous plug model was proposed to determine the degree of sulfonation (DS) of ionomer binder with respect to the membrane used in membrane-electrode assemblies (MEAs) and to analyze the fraction of proton pathways through ionomer-catalyst combined electrodes in MEAs for polymer electrolyte fuel cells (PEFCs). Sulfonated poly(ether ether ketone) was prepared to use a polymeric electrolyte and laboratory-made SPEEK solution (5wt.%, DMAc based) was added to catalyst slurry to form catalyst layers. In case of the SPEEK-based MEAs in this study, DS of ionomer binder for catalyst layers should be the same or higher than that of the SPEEK membrane used in the MEAs. The porous plug model suggested that most of protons were via the ionomer binder (${\sim}92.5%$) bridging the catalyst surface to the polymeric electrolyte, compared with the pathways through the alternative between the interstitial water on the surface of ionomer binder or catalyst and the ionomer binder (${\sim}7.3%$) and through only the interstitial water on the surface of ionomer or catalyst (${\sim}0.2%$) in the electrode of the MEA comprising of the sulfonated poly(ether ether ketone) membrane and the 5wt.% SPEEK ionomer binder. As a result, it was believed that the majority of proton at both electrodeds moves through ionomer binder until reaching to electrolyte membrane. The porous plug model of the electrodes of MEAs reemphasized the importance of well-optimized structure of ionomer binder and catalyst for fuel cells.

COMPARISON OF MONOMER RELEASE FROM PIT AND FISSURE SEALANT FOLLOWING VARIOUS SURFACE TREATMENT (치면열구전색제의 광중합 후 표면 처리 방법에 따른 미반응 모노머 용리 비교)

  • Lee, Sang-Woo;Lee, Ju-Hyun;Seo, Hyun-Woo;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.1
    • /
    • pp.70-76
    • /
    • 2006
  • The aim of this study was comparison of effectiveness of surface treatment methods in reducing the oxygen-inhibited layer of a commercially available freshly polymerized, light cured dental sealant($concise^{TM}$, 3M, St Paul, USA). Surface treatment groups were consisted of no treatment(negative control group) and 3 experimental groups according to surface treatment of light-cured sealant. Experimental group I was 10 seconds' exposure to distilled water syringe, group II was 10 seconds' manual application using a cotton pellet wetted with 75% alcohol and group III was 10 seconds' prophylaxis with pumice/water slurry using rubber cup on a slow-speed handpiece. All specimens were immersed in 5ml distilled water and stored at 37c water bath for 10 minutes. All eluates were analyzed by HLPC for identification and quantitive analysis of monomers. The results of this study can be summarized as follows. 1. None of the chromatograms of the tested sealant displayed peaks with the same retention time as that of the standard solution, except for TEGDMA. 2. All surface treatment group had a statistically significant decrease of monomer release in comparison with no treatment group. 3. Removal effects of unreacted monomer in group III was statistically significant in comparison with group I and group II. These results revealed that mechanical method using pumice and rubber cup is the most effective in removing residual monomer and may be valuable to be used effectively in clinic.

  • PDF

Effect of Concentration and Surface Property of Silica Sol on the Determination of Particle Size and Electrophoretic Mobility by Light Scattering Method (광산란법에서 실리카 졸의 농도 및 표면특성이 입자 크기 및 전기영동 이동도 측정결과에 미치는 영향)

  • Cho, Gyeong Sook;Lee, Dong-Hyun;Kim, Dae Sung;Lim, Hyung Mi;Kim, Chong Youp;Lee, Seung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.622-627
    • /
    • 2013
  • Colloidal silica is used in various industrial products such as chemical mechanical polishing slurry for planarization of silicon and sapphire wafer, organic-inorganic hybrid coatings, binder of investment casting, etc. An accurate determination of particle size and dispersion stability of silica sol is demanded because it has a strong influence on surface of wafer, film of coatings or bulks having mechanical, chemical and optical properties. The study herein is discussed on the effect of measurement results of average particle size, sol viscosity and electrophoretic mobility of particle according to the volume fraction of eight types of silica sol with different size and surface properties of silica particles which are presented by the manufacturer. The measured particle size and the mobility of these sol were changed by volume fraction or particle size due to highly active surface of silica particle and change of concentration of counter ion by dilution of silica sol. While in case the measured sizes of small particles less than 60 nm are increased with increasing volume fraction, the measured sizes of larger particles than 60 nm are slightly decreased. The mobility of small particle such as 12 nm are decreased with increase of viscosity. However, the mobility of 100 nm particles under 0.048 volume fraction are increased with increasing volume fraction and then decreased over higher volume fraction.

Quality characteristics of cookies added with RS4 type resistant corn starch (RS4 형태의 옥수수 저항전분이 첨가된 쿠키의 품질 특성)

  • Bae, Chun-Ho;Park, Gyu-Hwan;Kang, Woo-Won;Park, Heui-Dong
    • Food Science and Preservation
    • /
    • v.20 no.4
    • /
    • pp.539-545
    • /
    • 2013
  • Effects of RS4 type resistant corn starch on the quality characteristics of cookies were investigated by physicochemical, instrumental and sensory evaluation. The resistant starch was made by cross-linking of corn starch as following; corn starch slurry was annealed at pH 2.0 and $50^{\circ}C$ for 2 h followed by the cross-linking reaction. The cross-linking reaction was performed at $50^{\circ}C$ for 12 h in the presence of 1.2%/st.ds NaOH, 10%/st.ds sodium sulfate and 10%/st.ds of sodium trimetaphosphate (STMP)/sodium tripolyphosphate (STPP) mixture. Dietary fiber content of the resistant starch was estimated to be 73.8% by the AOAC method. For quality characteristics, dough pH decreased with the increase of the resistant starch content and spread factor decreased a little at 20% of the resistant starch. The moisture content and L value of cookies increased with the increase of the resistant starch content. However, the hardness and fracturability decreased with the increase of the resistant starch content. In the sensory evaluation, no significant differences were observed between the two cookies with or without the resistant starch. The results of this study suggest that the RS4 type resistant corn starch can be a good ingredient to increase dietary fiber content in cookies without changes of their qualities.

Stability Behavior of Geotextile Tube Composite Structure by Slope Stability and 2-D Limit Equilibrium Analysis (2차원 한계평형 및 사면안정해석을 통한 지오텍스타일 튜브 복합구조물의 안정성 분석)

  • Oh, Young-In;Shin, Eun-Chul;Kang, Jeong-Gu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.11-18
    • /
    • 2006
  • Geotextile has been used for various types of containers, such as small hand-filled sandbags, 3-dimensional fabric forms for concrete paste, large soil and aggregate filled geotextile gabion, prefabricated hydraulically filled containers. They are hydraulically filled with dredged materials and have been applied in coastal protection and scour protection, dewatering method of slurry, temporary working platform for bridge construction, temporary embankment for spill way dam construction. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. The paper presents the stability behavior of geotextile tube composite structure by 2-D limit equilibrium and slope stability analysis. 2-D limit equilibrium analysis was performed to evaluate the stability of geotextile tube composite structure to the lateral earth pressure and also transient seepage and stability analysis were conducted to determine the pore pressure distribution by tide variation and slope stability. Based on the results of this paper, the three types of geotextile tube composite structure is stable and also slope stability of overall geotextile tube composite structures is stable with the variation of tidal conditions.

  • PDF

Separation of Cerium Hydroxide from Wasted Cerium Polishing Powders by the Aeration and Acidity-Controlling Method (폐세륨연마재 건조분말로부터 공기산화 및 산도조절에 의한 수산화세륨의 분리회수)

  • Yoon Ho-Sung;Kim Chul-Joo;Eom Hyoung-Choon;Kim Joon-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.3-9
    • /
    • 2005
  • In this study, the separation and recovery of cerium hydroxide was investigated from the wasted cerium polishing powders. Waste cerium polishing powder contains $64.5\;wt\%$ of rare earth oxide and the content of cerium oxide is $36.5\;wt\%$. Since cerium oxide, $56.3\%$ of rare earths, is the most stable state in rare earth, the dissolution of cerium oxide in acid solution is not easy. Therefore the process of rare earth oxide by sulfation and water leaching was examined in order to increase the recovery of rare earth. Rare earth elements were recovered in the form of $\Re{\cdot}Na(SO_{4})_{2}$ by the addition of sodium sulfate to leached solution. The slurry of rare earth hydroxide was prepared by the addition of $\Re{\cdot}Na(SO_{4})_{2}$ to sodium hydroxide solution. After the oxidation of cerous hydroxide($CE(OH)_{3}$) to ceric hydroxide($CE(OH)_{3}$) by aeration, ceric hydroxide was separated from other rare earth hydroxides by controlling the acidity of solution.

Optimization of anode and electrolyte microstructure for Solid Oxide Fuel Cells (고체산화물 연료전지 연료극 및 전해질 미세구조 최적화)

  • Noh, Jong Hyeok;Myung, Jae-ha
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.525-530
    • /
    • 2019
  • The performance and stability of solid oxide fuel cells (SOFCs) depend on the microstructure of the electrode and electrolyte. In anode, porosity and pore distribution affect the active site and fuel gas transfer. In an electrolyte, density and thickness determine the ohmic resistance. To optimizing these conditions, using costly method cannot be a suitable research plan for aiming at commercialization. To solve these drawbacks, we made high performance unit cells with low cost and highly efficient ceramic processes. We selected the NiO-YSZ cermet that is a commercial anode material and used facile methods like die pressing and dip coating process. The porosity of anode was controlled by the amount of carbon black (CB) pore former from 10 wt% to 20 wt% and final sintering temperature from $1350^{\circ}C$ to $1450^{\circ}C$. To achieve a dense thin film electrolyte, the thickness and microstructure of electrolyte were controlled by changing the YSZ loading (vol%) of the slurry from 1 vol% to 5 vol. From results, we achieved the 40% porosity that is well known as an optimum value in Ni-YSZ anode, by adding 15wt% of CB and sintering at $1350^{\circ}C$. YSZ electrolyte thickness was controllable from $2{\mu}m$ to $28{\mu}m$ and dense microstructure is formed at 3vol% of YSZ loading via dip coating process. Finally, a unit cell composed of Ni-YSZ anode with 40% porosity, YSZ electrolyte with a $22{\mu}m$ thickness and LSM-YSZ cathode had a maximum power density of $1.426Wcm^{-2}$ at $800^{\circ}C$.

An Experimental Study on the Heave Characteristics of DCM Heaving Soil (DCM 부상토의 융기 특성에 대한 실험적 연구)

  • Eonsang Park;Seungdo Park
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.5-12
    • /
    • 2023
  • In this study, the amount of heaving soil and the heave characteristics of the heaving soil generated at the actual site were quantitatively analyzed through DCM laboratory test construction. By reproducing a series of construction processes of the DCM method in a large-scale soil tank close to the actual site, the amount of heaving soil was predicted and the elevation characteristics such as elevation, diffusion range, diffusion angle and amount of elevation of the heaving soil were evaluated. As a result of the laboratory test construction, the actual elevation in terms of similarity within the DCM improvement section is 0~8.18m, and an average of 3.50m is observed. The actual diffusion range of the heaving soil converted to the similarity ratio is distributed from 28.0 to 38.0m on the left and right sides of the improvement section. The total amount of heaving soil calculated by the SUFFER program based on the results of the laboratory test construction is 19,901m3. Compared with the injected slurry amount of 16,992m3, the amount of heave compared to the injected amount is analyzed as 85.4%. The diffusion angle of DCM heaving soil, which analyzed the results of DCM laboratory test construction with the SUFFER program, is measured to be 30.0~38.0° at a depth of 50.0m, and is evaluated as an average of 34.0°. On the other hand, based on the DCM laboratory test construction and the analysis results using the program performed in this study, the amount of heaving soil at the DCM depths of 40.0m and 60.0m is predicted.

Effect of Fiber Dispersion on Mechanical Strength of SiCf/SiC Composites (강화 섬유의 분산도가 SiCf/SiC 복합소재의 기계적 강도에 미치는 영향)

  • Ji Beom Choi;Soo-Hyun Kim;Seulhee Lee;In-Sub Han;Hyung-Joon Bang;Seyoung Kim;Young-Hoon Seong
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.180-185
    • /
    • 2023
  • This paper investigates the impact of fiber dispersion on the internal structure and mechanical strength of SiCf/SiC composites manufactured using spread SiC fibers. The fiber volume ratio of the specimen to which spread SiC fiber was applied decreased by 9%p compared to the non-spread specimen, and the resin slurry impregnated between the fibers more smoothly, resulting in minimal matrix porosity. In order to compare the fiber dispersion of each specimen, a method was proposed to quantify and evaluate the separation distance between fibers in composite materials. The results showed that the distance between fibers in the spread specimen increased by 2.23 ㎛ compared to the non-spread specimen, with a significant 42.6% increase in the distance between fiber surfaces. Furthermore, the 3pt bending test demonstrated a 49.3% higher flexural strength in the spread specimen, accompanied by a more uniform deviation in test data. These findings highlight the significant influence of SiC fiber dispersion on achieving uniform densification of the SiCf/SiC matrix and increasing mechanical strength.

Development of Anode-supported Planar SOFC with Large Area by tape Casting Method (테입캐스팅을 이용한 대면적 (100 cm2) 연료극 지지체식 평판형 고체산화물 연료전지의 개발)

  • Yu, Seung-Ho;Song, Keun-Suk;Song, Hee-Jung;Kim, Jong-Hee;Song, Rak-Hyun;Jung, Doo-Hwan;Peck, Dong-Hyun;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.41-47
    • /
    • 2003
  • For the development of low temperature anode-supported planar solid oxide fuel cell, the planar anode supports with the thickness of 0.8 to 1 mm and the area of 25, 100 and $150\;cm^2$ were fabricated by the tape casting method. The strength, porosity, gas permeability and electrical conductivity of the planar anode support were measured. The porosity of anode supports sintered at $1400^{\circ}C$ and then reduced in$H_2$ atmosphere was increased from $45.8\%\;to\;53.9\%$. The electrical conductivity of the anode support was $900 S/cm\;at\; 850^{\circ}C$ and its gas permeability was 6l/min at 1 atm in air atmosphere. The electrolyte layer and cathode layer were fabricated by slurry dip coating method and then had examined the thickness of $10{\mu}m$ and the gas permeability of 2.5 ml/min at 3 atm in air atmosphere. As preliminary experiment, cathode multi-layered structure consists of LSM-YSZ/LSM/LSCF. At single cell test using the electrolyte layer with thickness of 20 to $30{\mu}m$, we achieved $300\;mA/cm^2$ and 0.6V at $750^{\circ}C$