• Title/Summary/Keyword: Slurry Reactor

Search Result 87, Processing Time 0.024 seconds

Basic Studies on Deodorization Management of the Efflux From Swine Slurry Treated by the Thermophilic Aerobic Oxidation(TAO) Reactor (고온호기산화법으로 처리된 양돈분뇨 배출액의 무취화 관리방안에 관한 기초 연구)

  • 이명규;허재숙;태민호;정진영;권오중
    • Journal of Animal Environmental Science
    • /
    • v.5 no.2
    • /
    • pp.123-132
    • /
    • 1999
  • This study was carried out to find deodorization management method of the efflux from swine slurry treated by thermophilic aerobic oxidation reactor. Three kinds of deodorization methods in Lab-scale reactors, were used in this experiment; No treatment, air injection treatment(50$m\ell$ air/min. $\ell$) and inoculumn of photrophic bacteria treatement(108 cell(Most probable number, MPN)/$m\ell$). The concentration of volatile fatty acids(VFAs), hydrogen sulfide(H2S), and ammonia(NH3) were analyzed during the treatment period(50 days). The major results obtained as follows. 1. Air injection method to efflux showed very high removal effect on malodorants such as VFAs, hydrogen sulfide(H2B). But ammonia(NH3) was emitted to much. 2. PTB inoculum method was also effective in removal of malodorants, VFAs, Hydrogen sulfide(H2S), when it was applied to the efflux. 3. We found that the concentrations of malodorants, VFAs, H2S, NH3 had some relatinships with the pH, ORP, BOD in the efflux.

Improvement of Desulfurization Performance of Low-grade Limestone Slurry Using Organic Acid Additives (유기산 첨가제를 이용한 저품질 석회석 슬러리의 탈황 성능 개선)

  • Jeong, Ji Eun;Cho, In Ah;Lee, Chang-Yong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.190-196
    • /
    • 2021
  • Desulfurization reaction in a bubble type reactor was carried out by adding three organic acids such as acetic acid, lactic acid, and antic acid to investigate the enhancement of the desulfurization performance of low-grade limestone. Desulfurization of limestone slurry without organic acids initiated to degrade at pH 5.2 or less, whereas organic acid-added limestone slurry exhibited a stable efficiency in the initial desulfurization with slurry pH ranging 4.2~4.5. At slurry pH below 4, the desulfurization performance of limestone slurry with addition of organic acids may be related to the amount of anions produced by dissociation of the organic acids. When limestone slurry had a large amount of anions, a rapid decrease in buffer capacity of slurry pH did not occur. These results were due to the acidity and dissociation of organic acids. The desulfurization performance of low-grade limestone slurry increased in the order of acetic acid (2.6%) < lactic acid (6.4%) < formic acid (16.7%).

Deodorization Management of Swine-Slurry by Addition of Phototrophic Bacteria (광합성 세균을 이용한 고농도 양돈슬러리의 무취화 관리방안에 관한 연구)

  • 이명규;권오중;정진영;태민호;허재숙
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.137-147
    • /
    • 1998
  • This study was carried out to find deodorization effect of swine-slurry by addition of phototrophic bacteria(PTB). The pilot-scale reactors operation conditions was designed by the inoculum amounts of PTB and light-conditions. Treatment conditions was divided into 3 types; 106 MPN/ml$.$Dark(T-1), 108 MPN/ml$.$Dark(T-2), 108 MPN/ml$.$Natural light(T-3). The changes of the concentration of volatile fatty acids(VFAs), hydrogen sulfide(H2S), ammonia (NH3) and odor intensity were analyzed during the treatment period(35 days). From results of this study, the maximum intensity of odor in the headspace of the reactor T-1 was 4.82 and T-2, T-3 was 2.63, respectively. In swine-slurry of reactors used, it almost took 10 days until to be stabilized with solid and liquid phase. Intensity of odor in headspace was mainly derived from the liquid phase. The PTB inoculum method to swine-slurry was very effective in reduction of VFAs, H2S and Sulfate-reducing bacteria(SRB) concentration. Expecially, It was interested in reverse growth behaviour of SRB and PTB in these conditions.

  • PDF

Effect of Aeration Mechanism on Livestock Manure Liquid Fertilization (폭기형태가 돈분뇨 액비 부숙특성에 미치는 영향)

  • Jeong, Kwang-Hwa;Khan, Modabber Ahmed;Kim, Chang-Hyun;Lee, Dong-Hyun;Choi, Dong-Yoon;Yu, Yong-Hee
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.703-713
    • /
    • 2012
  • Three types of aeration system were installed in experimental liquid fertilization tanks to investigate the change of characteristics of pig slurry used as a raw material for making livestock liquid fertilizer. The aeration systems of the reaction tanks were composed of three major part: the air suppling part (blower), the air pipe part, and the air diffuser part. In the first tank (reactor A), the air was supplied from the bottom of the reaction tank through air pipe system connecting air diffuser with commercial ordinary blower. In the second tank (reactor B), the air diffuser was located 10cm above the bottom of the reactor. In the third tank (reactor C), the pure air was supplied with circulating pjg slurry. The oxygen content of pure air was about 90%. The pure air was mixed with pig slurry by mechanically in the air suppling part (blower) and the air pipe part. The agitation effect was highest in the reactor C than other reactors. The contents of SS, COD, T-N and T-P of each samples collected at middle part of all reactors were 8,500, 4,188, 694 and 422mg/L; 9,000, 4,247, 813 and 356mg/L; 8,667, 6,910, 973 and 269mg/L, respectively.

Waste treatment with the pilot scale ATAD and EGSB pig slurry management system followed by sequencing batch treatment

  • Lee, Young-Shin;Han, Gee-Bong
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.277-284
    • /
    • 2015
  • Experiments for highly concentrated contaminants in pig waste slurry were carried out for the feasibility test of a pilot-scale innovative process scheme of engaging autothermal thermophilic aerobic digestion (ATAD) and expended granular sludge bed (EGSB) followed by sequencing batch reactor (SBR) system. Contaminants in pig waste slurry such as organic substance, total nitrogen (TN), ammonia nitrogen and total phosphorus (TP) contents were successfully reduced in the system. Total volatile solids (TVS) and chemical oxygen demands (COD) for organic matter in the feed were 32.92 g/L and 42.55 g/L respectively, and they were reduced by about 98.7% and 99.2%, respectively in the system. The overall removal efficiencies for TN and ammonium nitrogen were found to be 98.1 and 98.5%, respectively. The overall removal efficiency for total phosphorus was also found to be 92.5%. Faecal coliform density was reduced to <$1.2{\times}10^4CFU/g$ total solids. Biogas and $CH_4$ were produced in the range of 0.39-0.85 and $0.25-0.62m^3/kg$ [VS removed], respectively. The biogas produced in the system comprised of $295{\pm}26ppm$ (v/v) [$H_2S$].

Measurement Emission of Greenhouse Gases from Composting Process for Pig Slurry (돈 슬러리 발효증발 퇴비화 시스템의 온실가스 배출량 측정)

  • 박치호;윤태한;감재환
    • Journal of Animal Environmental Science
    • /
    • v.7 no.2
    • /
    • pp.111-118
    • /
    • 2001
  • This study was performed for measuring the emission of greenhouse gases, $CH_4,\;N_2O$, from the composting process for pig slurry. For the experiment the benchscale pilot plant was designed by 1$m^3$ volume reactor with a closed type and operated; sawdust 142kg filled before input slurry, slurry about 10~20l inputed per day (total 380l), air supplied 5l/min for 24 hours, mixing time 10 min./day and 1 time a day. From the total experiment period(30days), the amount of VS degradation and emission $CH_4$, $N_2O$ were 10.9kg-VS and 1,582.4g-$CH_4$, 68.1g-$N_2O$ respectively. Based on VS inputed the emission of $CH_4$, $N_2O$ were 15.3(g-$CH_4$/kg-V $S_{input}$), 0.7(g-$N_2O$ /kg-V $S_{input}$), and based on VS degradated were 145.2(g-$CH_4$/kg-V $S_{removed}$), 6.2(g-$N_2O$ /kg-V $S_{removed}$).

  • PDF

Effect of Recycled-Water Addition on Treatment Efficiency of Coal Tar-Contaminated Soil with Slurry Phase Bioreactor (콜타르 오염토양의 슬러리상 생물반응기에서 처리수 재순환에 따른 효율 평가)

  • Park, Joon-Seok;Park, Jin-Hong;Namkoong, Wan
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.712-718
    • /
    • 2005
  • This research was conducted to evaluate the effect of recycled-water addition on the treatment of coar tar-contaminated soil with slurry phase bioreactor. A bench-scale slurry phase bioreactor was maintained to optimize the microbial growth. Silty loam soil was used for this research. Concentrations of coal tar and 14 target PAHs (Polyunclear Aromatic Hydrocarbons) in the soil were determined with gas chromatography. Addition of recycled-water to slurry phase bioreactor was not significantly increased the removal efficiency of 2000 mg coar tar/kg. However, it significantly increased the removal efficiency of 20000 mg coar tar/kg. In 20000 mg coar tar/kg, the first order kinetic constant and the removal efficiency of the reactor with recycled-water addition were 2.5 and 2.0 times higher than those of the reactor without recycled- water addition. Coar tar in the slurry phase bioreactor was removed in 3.8~16.0% by vaporization and biodegraded in 84.0~96.2%. Removal efficiency of 3-ring compounds was high as 92.2~99.7% in the case of recycled-water addition. However, removal efficiencies of 3 and 4-ring compounds were low as 0~30%.

Comparison of Liquid Composting Efficiency using Liquid Pig Manure in Different Condition (가축분뇨 슬러리 액비 부숙 조건별 특성비교)

  • Jung, Kwang-Yong;Cho, Nam-Jun;Jeong, Yee-Geun
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.301-305
    • /
    • 1998
  • This study was conducted to evaluate the liquid composting efficiency using pig manure in different condition such as simple storage type reactor, continuous aeration reactor, anaerobic reactor and anaerobic agitation reactor. Continuous aeration reactor was the most efficiency method to BOD and malodors removal than other methods. While nitrogen loss in continuous aeration reactor was 47% of initial concentration, which was the higher amount than any other digestion methods. The digestion efficiency between anaerobic reactor and anaerobic agitation reactor were similar, but E. coli and malodor removal efficiency were a little higher in the anaerobic agitation reactor. Simple storage type reactor which was conventional digestion method in rural area gave lower efficiency than aerobic and anaerobic digestion methods in view of BOD, E. coli and malodor removal. The liquid composting efficiency which were evaluated by various indicators like pH, BOD, E, coli, malodor and nitrogen loss was high in the order of anaerobic agitation reactor>continuous aeration reactor>anaerobic reactor>simple storage type reactor.

  • PDF

Piggery Slurry Composting Using Batch Operating Autothermal Thermophilic Aerobic Digestion System

  • Ahn, Hee K.;Choi, Hong L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.273-279
    • /
    • 2006
  • The performance of an autothermal thermophilic aerobic digestion (ATAD) system was studied to determine if nitrogen loss, as ammonia, was affected by an exhaust gas condenser. The system was run with and without a condenser while treating $8m^3$ of piggery slurry for 8 days. The system with a condenser (SWC) maintained the reactor temperatures above $40^{\circ}C$ for 2 days during the 8 days run, while the system without a condenser (SWOC) remained above $40^{\circ}C$ for 6 days. The SWC maintained the reactor temperatures mostly at mesophilic conditions while the SWOC at thermophilc conditions. Differences in operation conditions for the two runs were mainly caused by differences in atmospheric temperatures. Soluble chemical oxygen demand (SCOD) and volatile solids (VS) removal efficiencies of the SWC (SCOD: 62%, VS: 41%) were higher than those of the SWOC (SCOD: 40%, VS: 20%). The total Kjeldal nitrogen (TKN) removal efficiency of the SWC (7%) was less than that of the SWOC (25%). The concentration of total volatile fatty acids (VFA) in the SWC was observed to be lower than the threshold value of 0.23 g total VFA/L after 6 days, while the SWOC progressed below the threshold value after 3 days. No offensive odor emissions were observed in either run, which suggest that the use of the ATAD system may be a good odor removal strategy.

Study on the Continuous Composting Process to Reduce the Use of Bulking Agent in Pig Slurry (톱밥 절감형 돈분 슬러리 연속 퇴비화 공정 연구)

  • Ryoo, J,.W.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.2
    • /
    • pp.121-128
    • /
    • 2007
  • To develop the composting system to reduce the use of bulking agent, continuous composting was performed with farmer scale facility, The plant comprises a horizontal pit reactor closed inside a greenhouse and equipped with a turning machine moving on rails. The pit was 9m wide and 50m long and the maximum height of loaded materials was $1.8m^2$. The materials remained in the reactor for 5 months. During the composting process, temperature and water content measured and water balance was evaluated. The reaction temperature of composting was changed $30{\sim}50^{\circ}C$ and high in the middle and low in under composting piles. The moisture contents of the compost were approximately 70% during the experiment. The amount of effluent was 10.6% and $3.16m^3$ of pig slurry per $1m^3$ of bulking agent was treated during continuous composting process. BOD and SS reduction of the effluent in continuous composting was 86.5% and 92.2%, respectively. Indoor relative humidity in night time was changed between 80 and 100%.

  • PDF