• Title/Summary/Keyword: Slurry, Abrasive

Search Result 166, Processing Time 0.033 seconds

Stability of Oxidizer $H_2O_2$ for Copper CMP Slurry (구리 CMP 슬러리를 위한 산화제 $H_2O_2$의 안정성)

  • Lee, Do-Won;Kim, In-Pyo;Kim, Nam-Hoon;Kim, Sang-Yong;Seo, Yong-Jin;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.382-385
    • /
    • 2003
  • Chemical mechanical polishing(CMP) is an essential process in the production of copper-based chips. On this work, the stability of Hydrogen Peroxide($H_2O_2$) as oxidizer of Cu CMP slurry has been investigated. $H_2O_2$ is known as the most common oxidizer in Cu CMP slurry. Copper slowly dissolves in $H_2O_2$ solutions and the interaction of $H_2O_2$ with copper surface had been studied in the literature. Because hydrogen peroxide is a weak acid in aqueous solutions, a passivation-type slurry chemistry could be achieved only with pH buffered solution.[1] Moreover, $H_2O_2$ is so unstable that its stabilization is needed using as oxidizer. As adding KOH as pH buffering agent, stability of $H_2O_2$ decreased. However, stability went up with putting in small amount of BTA as film forming agent. There was no difference of $H_2O_2$ stability between KOH and TMAH at same pH. On the other hand, $H_2O_2$ dispersion of TMAH is lower than that of KOH. Furthermore, adding $H_2O_2$ in slurry in advance of bead milling lead to better stability than adding after bead milling. Generally, various solutions of phosphoric acids result in a higher stability. Using Alumina C as abrasive was good at stabilizing for $H_2O_2$; moreover, better stability was gotten by adding $H_3PO_4$.

  • PDF

Slurry Characteristics by Surfactant Condition at Copper CMP (구리 CMP 공정시 계면활성제 첨가 조건에 의한 슬러리 특성)

  • Kim, In-Pyo;Kim, Nam-Hoon;Lim, Jong-Heun;Kim, Sang-Yong;Kim, Tae-Hyoung;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.166-169
    • /
    • 2003
  • In this study, we evaluated the characteristics by the addition of 3 different kinds of nonionic surfactant to improve the dispersion stability of slurries. Slurry stability is an issue in any industry in which settling of particles can result in poor performance. So we observed the variation of particle size and settling rate when the concentration and addition time of surfactant are changed. When the surfactant is added after milling process, the particle size and pH became low. It is supposed that the particle agglomeration was disturbed by adsorption of surfactant on alumina abrasive. The settling rate was relatively stable when nonionic surfactant is added about 0.1~1.0 wt%. When molecular weight(MW) is too small like Brij 35, it was appeared low effect on dispersion stability. Because it can't prevent coagulation and subsequent settling with too small MW. The proper quality of MW for slurry stability was presented about 500,000. Consequently, the addition of nonionic surfactant to alumina slurry has been shown to have very good effect on slurry stabilization. If we apply this results to copper CMP process, it is thought that we will be able to obtain better yield.

  • PDF

[Retraction]Size measurement and characterization of ceria nanoparticles using asymmetrical flow field-flow fractionation (AsFlFFF)

  • Kim, Kihyun;Choi, Seong-Ho;Lee, Seungho;Kim, Woonjung
    • Analytical Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.173-184
    • /
    • 2019
  • As the size of semiconductors becomes smaller, it is necessary to perform high precision polishing of nanoscale. Ceria, which is generally used as an abrasive, is widely used because of its uniform quality, but its stability is not high because it has a high molecular weight and causes agglomeration and rapid precipitation. Such agglomeration and precipitation causes scratches in the polishing process. Therefore, it is important to accurately analyze the size distribution of ceria particles. In this study, a study was conducted to select dispersants useful for preventing coagulation and sedimentation of ceria. First, a dispersant was synthesized and a ceria slurry was prepared. The defoamer selection experiment was performed in order to remove the air bubbles which may occur in the production of ceria slurry. Dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) were used to determine the size distribution of ceria particles in the slurry. AsFlFFF is a technique for separating nanoparticles based on sequential elution of samples as in chromatography, and is a useful technique for determining the particle size distribution of nanoparticle samples. AsFlFFF was able to confirm the presence of a little quantities of large particles in the vicinity of 300 nm, which DLS can not detect, besides the main distribution in the range of 60-80 nm. AsFlFFF showed better accuracy and precision than DLS for particle size analysis of a little quantities of large particles such as ceria slurry treated in this study.

A Study on the Correlation between Temperature and CMP Characteristics (CMP특성과 온도의 상호관계에 관한 연구)

  • Gwon, Dae-Hui;Kim, Hyeong-Jae;Jeong, Hae-Do;Lee, Eung-Suk;Sin, Yeong-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.156-162
    • /
    • 2002
  • There are many factors affecting the results of CMP (Chemical Mechanical Polishing). Among them, the temperature is related to the removal rate and WIWNU (Within Wafer Non-Uniformity). In other words, the removal rate is proportional to the temperature and the variation of temperature distribution on a pad affects the non-uniformity within a wafer. In the former case, the active chemistry improves the rate of chemical reaction and the removal rate becomes better. But, there are not many advanced studies. In the latter case, a kinematical analysis between work-piece and pad can be obtained. And such result analysed from the mechanical aspect can be directly related to the temperature distribution on a pad affecting WIWNU. Meanwhile, the temperature change affects the quantities of both slurry and pad. The change of a pH value of the slurry chemistry due to a temperature variation affects the surface state of an abrasive particle and hence the agglomeration of abrasives happens above the certain temperature. And the pH alteration also affects the zeta potential of a pad surface and therefore the electrical force between pad and abrasive changes. Such results could affect the removal rate and etc. Moreover, the temperature changes the 1st and 2nd elastic moduli of a pad which are closely related to the removal rate and the WIWNU.

Influence of Silica slurry by $MnO_2$ abrasive ($MnO_2$ 연마제가 실리카 슬러리에 미치는 영향에 관한 연구)

  • Lee, Young-Kyun;Lee, Woo-Sun;Park, Sung-Woo;Choi, Gwon-Woo;Ko, Pil-Ju;Han, Sang-Jun;Park, Ju-Sun;Na, Han-Yong;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.543-543
    • /
    • 2008
  • 반도체 집적회로의 제조 공정 중 CMP 공정이 필수 핵심기술이 되었다. 이처럼 CMP 공정 기술이 다층 배선 구조의 광역 평탄화를 위해서는 매우 효과적이지만 기계적인 연마패드와 화학적인 식각 작용을 하는 슬러리를 이용하여 연마가 진행되므로 공정 결함이 문제시되어 왔다. 그 중에서도, 소모자재의 비용이 CMP 공정비용의 70% 이상을 차지하는 제조단가가 높다는 단점이 있다. 특히 고가의 슬러리가 차지하는 비중이 40% 이상을 넘고 있어, 슬러리 원액의 소모량을 줄이기 위한 연구들이 현재 활발히 연구 중에 있다. 본 논문에서는 새로운 혼합 연마제 슬러리에 대한 CMP 특성을 통해 기존에 상용화된 슬러리의 CMP 특성과 비교 고찰하여 MAS의 우수성을 입증하고, 최적화된 공정기술 연구의 기반으로 활용하고자 실리카 슬러리에 $MnO_2$ 연마제를 혼합하여 연마특성을 비교분석하였고, AFM, EDX, XRD, TEM분석을 통해 그 가능성을 알아보았다.

  • PDF

A study on the decay of friction force during CMP (화학 기계적 연마에서 마찰력 감소에 관한 연구)

  • 권대희;김형재;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.972-975
    • /
    • 2002
  • An understanding of tribological behavior in CMP(Chemical Mechanical Polishing) is one of the most important things to reveal the mechanism of material removal. In CMP, the contact type is thought to be semi-direct, elastohydrodynamic contact type from the Stribeck diagram, which is a combination of solid-solid direct contact and hydrodynamic lubrication with thin liquid film. This study is focused on the decay of friction force during CMP from two points of view, one of which is change of the real contact area and the other is the decrease of the elastic modulus of the pad caused by the increase of the temperature during CMP Experiments are implemented with elastic modulus measuring system and tool dynamometer. Results show that the decay of friction force during CMP results from the decrease of the real contact pressure working on an abrasive, which is induced by the decrease of elastic modulus of pad caused by the increase of temperature. And, the phenomenon is thought to be happen specially in the case that the weight concentration of abrasive in slurry is small enough.

  • PDF

A Study on Micro Ultrasonic machining for Brittle Material Using Ultrasonic vibration (초음파 진동을 이용한 취성재료 가공기술에 관한 연구)

  • 이석우;최헌종;이봉구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.969-972
    • /
    • 1997
  • Ultrasonic machining technology has been developed over recent years for he manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile application. The past decade has seen a tremendous in the use of ceramic in structural application. The excellent thermal, chemical and wear resistance of these material can be realized because of recent improvement in the overall strength and uniformity of advanced ceramics. Ultrasonic machining, in which abrasive particles in slurry with water are presented to the work surface in the presence of an ultrasonic-vibrating tool, is process which should be of considerable interest, as its potential is not limited by he electrical or chemical characteristics of the work material, making it suitable for application to ceramics. In order to improve the currently used ultrasonic machining using ultrasonic energy, technical accumulation is needed steadily through development of exciting device of ultrasonic machine composed of piezoelectric vibrator and horn. This paper intends to further the understanding of the basic mechanism of ultrasonic machining for brittle material and ultrasonic machining of ceramics based in the fracture-mechanic concept has been analyzed.

  • PDF

Chemical-assisted Ultrasonic Machining of Glass by Using HF Substitute Solution (불산대체용액을 이용한 유리의 초음파 가공)

  • 전성건;남권선;김병희;김헌영;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.262-267
    • /
    • 2004
  • Ultrasonic machining has been known as one of the conventional machining methods in the glass fabrication processes. In ultrasonic machining, typically, glass is removed by the impulse energy of the abrasive generated by the ultrasonic power. However, when the machining feature decrease under hundreds of micrometers, as conventional ultrasonic machining uses only the impulse energy of the abrasive, the speed of ultrasonic machining decreases significantly and the surface roughness becomes deteriorated. To overcome this size effect, the chemicals which can erode glasses, such as HF, XF, etc, are added to the slurry. The chemical-assisted ultrasonic machining method, so called, is another alternating effective way for micro machining of glasses. In previous work, we used the hydrofluoric acid (HF) as an additive chemical. But, as the HF solution is too poisonous to be used as a ultrasonic process additive, it is needed to be substituted by other safe chemicals. As results of the machinability comparison of several chemicals, the GST-500F was selected to replace the HF. The GST-500F (pH $4.0{\pm}1.0$) is non-volatile, odorless. During experimental works, it was shown that the machining rate increases 1.5 times faster than the conventional ultrasonic machining. The machining load also decreases. However, the enlargement of the hole diameter and significant tool wear are still the problems to be solved.

Characteristic of the Wear and Lubrication using the Friction Froce Measurement in CMP Process (CMP 공정에서 마찰력 측정을 통한 마멸 및 윤활 특성에 관한 연구)

  • Park, Boum-Young;Kim, Hyoung-Jae;Seo, Heon-Deok;Kim, Goo-Youn;Lee, Hyun-Seop;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.231-234
    • /
    • 2004
  • Chemical mechanical polishing(CMP) process was studied in terms of tribology in this paper. CMP performed by the down force and the relative motion of pad and wafer with the slurry is typically tribological system composed of friction, wear and lubrication. The piezoelectric quartz sensor for friction force measurement was installed and the friction force was detected during CMP process. Various coefficient of friction was attained and analyzed with the kind of pad, abrasive and the abrasive concentration. The lubrication regime is also classified with ${\eta}v/p(\eta,\;v\;and\;p;$ the viscosity, relative velocity and pressure). Especially, the co-relation not only between the friction force and the removal per unit distance but also between the coefficient of friction and within-wafer-nonuniformity was estimated.

  • PDF

Optimization of Electrolytes on Cn ECMP Process (Cu ECMP 공정에 사용디는 전해액의 최적화)

  • Kwon, Tae-Young;Kim, In-Kwon;Cho, Byung-Gwun;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.78-78
    • /
    • 2007
  • In semiconductor devices, Cu has been used for the formation of multilevel metal interconnects by the damascene technique. Also lower dielectric constant materials is needed for the below 65 nm technology node. However, the low-k materials has porous structure and they can be easily damaged by high down pressure during conventional CMP. Also, Cu surface are vulnerable to have surface scratches by abrasive particles in CMP slurry. In order to overcome these technical difficulties in CMP, electro-chemical mechanical planarization (ECMP) has been introduced. ECMP uses abrasive free electrolyte, soft pad and low down-force. Especially, electrolyte is an important process factor in ECMP. The purpose of this study was to characterize KOH and $KNO_3$ based electrolytes on electro-chemical mechanical. planarization. Also, the effect of additives such as an organic acid and oxidizer on ECMP behavior was investigated. The removal rate and static etch rate were measured to evaluate the effect of electro chemical reaction.

  • PDF