• Title/Summary/Keyword: Sluice Gate Position Controller

Search Result 2, Processing Time 0.014 seconds

Synchronous Position Controller Design of Hydraulic Cylinders for a Sluice Gate Using Fuzzy PI (퍼지 PI를 이용한 배수갑문용 유압실린더의 위치 및 동기 제어기 설계)

  • Choi, Byung-Jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.3
    • /
    • pp.117-120
    • /
    • 2014
  • In general a main technology of control a sluice gate is accurate synchronous position control for the two cylinders when they are moving with the sluice gate together over 10[m]. Because the nonlinear friction and the unconstant supply flow. Cylinders' displacement will be different. In this case the sluice gate may be deformed and abraded, and even the sluice gate may unable to work. In order to design the controller for this system, we designed two kinds of Fuzzy PI controllers. Fuzzy PI position controller and Fuzzy PI synchronous controller have been designed. We show some simulation results for its availability.

Design of Control System for Hydraulic Cylinders of a Sluice Gate Using Fuzzy PI Algorithm (퍼지 PI를 이용한 배수갑문용 유압실린더 제어기 설계)

  • Hui, Wuyin;Choi, Chul-Hee;Choi, Byung-Jae;Hong, Chun-Pyo;Yoo, Seog-Hwan;Kwon, Yeung-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.109-115
    • /
    • 2010
  • A main technology of opening and closing a sluice gate is accurate synchronous and position control for the two cylinders when they are moving with the sluice gate together over 10[m]. Since the supply flow and supply pressure of cylinders are not constant and a nonlinear friction force of the piston in cylinders exists, a difference will be made between the displacement of two cylinders. This difference causes the sluice gate to deform and abrade, and even it may be out of order. In order to solve this problem we design two kinds of fuzzy PI controllers. The former is for a position control of two cylinders, the latter is for their synchronous control. We show some simulation results compare the performance of fuzzy PI controller to the conventional PID controller.