• 제목/요약/키워드: Sludge treatment

검색결과 1,402건 처리시간 0.03초

호기성 호열미생물에 의한 하수슬러지 감량화 효율에 관한 연구 (A Study on Volume Reduction of Waste Sludge by Aerobic Thermophilic Bacteria)

  • 배윤선;김순영;남덕현;박철휘;김진수
    • 상하수도학회지
    • /
    • 제19권4호
    • /
    • pp.497-505
    • /
    • 2005
  • Domestic Sewage Treatment Plants are mostly based on biological treatment, in which large amounts of excess sludge are generated and occupy about 40 ~ 60% of the total sewage treatment costs. Several methods for sludge treatment has been so far reported as upgrading biodegradation of sludge; heat treatment, chemical treatment, including thermo-alkali and ozone, mechanical treatment including ultrasonic pulverization. But, it has a limitation in case of reducing the amount of excess sludge which are already producted. In this study, application of excess sludge reduction process using thermophilic aerobic bacteria for activated sludge was examined. The research was carried out two different stage. one for a biological wastewater treatment and the other for a thermophilic aerobic solubilization of the waste sludge. A portion of excess sludge from the wastewater treatment step was into the thermophilic aerobic sludge solubilization reactor, in which the injected sludge was solubilized by thermophilic aerobic bacteria. The solubilized sludge was returned to the aeration tank in the wastewater treatment step for its further degradation. Sludge solubilization reactor was operated at $63{\pm}2^{\circ}C$ with hydraulic retention time(HRT) of 1.5 ~ 1.7 day. Control group was operated with activated sludge process(AS) and experiment group was operated with three conditions(RUN 1, RUN 2, RUN3). RUN 1 was operated with AS without sludge solubilization reactor. RUN 2 were operated with AS with sludge solubilization reactor to examine correlation between sludge circulation ratio and sludge reduction ratio by setting up sludge circulation ratio to 3. RUN 3 was operated with sludge circulation ratio of 3 and MLSS concentration of 1,700~2,000mg/L to examine optimum operation condition. The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge solubilization ratio and sludge reduction ratio were 53. 7%, 95.2% respectively. After steady state operation, average concentration of TBOD, SBOD, $TCOD_{Cr}$, $SCOD_{Cr}$, TSS, VSS, T-N, T-P of effluent were 4.5, 1.7, 27 .8, 13.8, 8.1, 6.2, 15.1, 1.8mg/L in the control group and were 5.6, 2.0, 28.6, 19.1, 9.7, 7.2, 16.1, 2.0mg/L in the experimental group respectively. They were appropriate to effluent standard of Sewage Treatment Plants.

볼-밀 가용화 효과의 향상을 위한 하수슬러지 조건에 대한 연구 (Sewage sludge conditions for promoting solubilization in the ball mill treatment)

  • 이명주;김태형;남양원;황선진
    • 상하수도학회지
    • /
    • 제22권5호
    • /
    • pp.505-510
    • /
    • 2008
  • Excess sludge and raw sludge were treated by ball mill in order to promote solubilization, and it was known that the level of solubilization was higher in excess sludge rather than raw sludge. About solid concentration, with the increase of TS, the amounts of solubilization was increased. And excess sludge was solubilized more effectively with the increase of ball mill treatment time. Especially, in case of excess sludge, within 5 min of ball mill treatment, 6 times of solubilization was achieved compared with raw sludge. The effect of bead size was also tested and 1 mm bead was most desirable when applied to the TS 4% of excess sludge. Particle size decrease by the ball mill treatment was more effective in raw sludge, nevertheless the level of solubilization was always higher in excess sludge. This means that the results of particle analysis could not be understood as a indicator for sludge solubilization. Generally, excess sludge and raw sludge are mixed at the thicker in the STP, but considering a ball mill pretreatment as an alternative for sludge solubilization, it is desirable to treat not raw sludge but excess sludge alone in the aspect of solubilization yield and economical process.

전처리 방법에 따른 슬러지 가용화가 혐기소화에서 메탄 생산과 슬러지 감량에 미치는 영향 (Sludge Solubilization by Pre-treatment and its Effect on Methane Production and Sludge Reduction in Anaerobic Digestion)

  • 김동진;김혜영
    • Korean Chemical Engineering Research
    • /
    • 제48권1호
    • /
    • pp.103-109
    • /
    • 2010
  • 하폐수 처리과정에서 발생되는 슬러지는 주로 혐기소화에 의해 처리되며 슬러지를 감량하고 메탄을 생산할 수 있어 많이 이용되고 있다. 슬러지의 전처리는 혐기소화의 율속단계인 가수분해를 높여 처리속도를 향상시키므로 많은 연구가 진행 중이다. 본 연구에서는 열, 초음파, 열-알칼리의 전처리 기술에 따른 슬러지의 가수분해(가용화) 효과와 전처리한 슬러지를 혐기소화하여 메탄 생산량과 슬러지의 감량 효과를 비교하였다. 하수와 폐수 슬러지 가용화율은 열-알칼리 동시 처리한 경우에는 67과 70%로 가장 높았고 다음으로 초음파 처리와 열처리가 40% 이상의 비슷한 가용화율을 보였다. 혐기소화 가스의 메탄 함량은 45~70% 범위로 유지되었고 전처리한 슬러지가 control에 비해 높게 나타났다. 메탄 생산량은 열처리, 초음파 처리, 열-알칼리를 같이 처리한 경우가 control에 비해 각각 하수슬러지는 2.6, 2.7, 3.5배, 폐수 슬러지는 3.5, 4.1, 4.2배 증가하였다. 혐기소화 슬러지의 감량효과는 전처리한 슬러지가 control에 비해 5~19% 포인트 높게 나타났으며 열-알칼리 처리한 경우가 초음파와 열처리에 비해 우수한 감량 효과를 보였다. 위의 결과로부터 전처리가 메탄 생산량에서 뿐만 아니라 슬러지 처리처분 비용 절감에 있어서도 중요한 역할을 함을 확인할 수 있었고 열-알칼리 동시 처리가 가장 우수한 성능을 보였다.

폐슬러지와 폐굴껍질의 중금속 흡착특성 (Adsorption Characteristics of Heavy Metals for Waste Sludge and Oyster Shell)

  • 전대영;이경심;신현무;오광중
    • 한국환경과학회지
    • /
    • 제15권11호
    • /
    • pp.1053-1059
    • /
    • 2006
  • This study was performed to investigate the possible uses of waste sludge for the removal of heavy metal ions. The adsorption experiments were conducted with wastes such as sewage treatment sludge, water treatment sludge and oyster shell to evaluate their sorption characteristics. Heavy metals selected were cadmium, copper and lead. in the sorption experiments on the sewage treatment sludge, water treatment sludge, oyster shell and soil, sorption occurred in the beginning and it reached equilibrium after 40 minutes on the oyster shell and 4 hour on the sewage treatment sludge and water treatment sludge. Results of Freundlich isotherms indicated that sewage treatment sludge could be properly used as an adsorbent for heavy metals and sorption strength of heavy metals was in the order of Pb > Cu > Cd. In the influence of pH on the adsorbents, sorption rate was more than 80% in pH 4 and most of heavy metals were adsorbed in pH 9. Adsorption rate of Cd decreased with decreasing pH and then adsorption rate of Cu was lower in soil.

초음파 처리한 하수 슬러지의 가용화와 탈수 특성 연구 (A Study on the Solubilization and Dewaterability of Ultrasonically Treated Wastewater Sludge)

  • 윤유식;김동진;유익근;안대희
    • 한국환경과학회지
    • /
    • 제18권6호
    • /
    • pp.675-682
    • /
    • 2009
  • Sludge minimization from wastewater treatment plant is becoming more important to save disposal costs and to contribute to sustainable development. For the reduction of sludge production, solubilization and dewaterability of sludge are important factors in sludge processing. Ultrasonic treatment has been used to enhance sludge solubility and dewaterability with anaerobic digestion sludge, primary sludge, and activated sludge. At the ultrasonic power of 0.2 kW/L for 1 hour, anaerobic sludge and activated sludge showed higher solubilization efficiency than the primary sludge in terms of COD, proteins, and suspended solids. Ultrasonic treatment decreased sludge dewaterability and sludge settling characteristics up to 720 kJ/L of ultrasonic energy. In conclusion, ultrasonic treatment was effective for sludge solubilization but it deteriorate dewaterability (specific resistance) and settling characteristics (SVI) of sludge at the experimental conditions.

기존 하수처리장에서의 처리 효율개선에 관한 연구 (A Study on the improvement of treatment efficiency in a conventional sewage treatment plant)

  • 안철우;박진식;문추연
    • 환경위생공학
    • /
    • 제15권3호
    • /
    • pp.50-56
    • /
    • 2000
  • In this study, sewage were treated with operating Two-step Aeration System and conventional activated sludge process together in a condition. At the same HRT 8hr of Two-step Aeration System and Activated Sludge Process, BOD treatment efficiency of 1st sedimentation basin effluent 36.9% by Two-step Aeration system was 12.3% higher than 24.65 by Activated Sludge Process and the COD treatment efficiency 39.8% by two-step Aeration System was 11.6.3% higher than 28.2% by Activated Sludge Process. BOD and COD treatment efficiencies of 2nd sedimentation basin effluent were 88.1% and 85.6% Two-step Aeration System and were 83.8% and 82.3% Activated Sludge Process. In the first treatment, as BOD was relatively removed a lot, F/M ratio 0.17, $0.21{\cdot}BOD/kg{\cdot}MLSS.d$ was maintained by Activated Sludge Process. Therefore it was proved that organic matter treatment efficiency by Two-step Aeration System os Higher than by Activated Sludge Process in a aeration time 8hr. $NH_4^{+}-N$ treatment efficiencies were 55.5% by Two-step Aeration System and 39.75 by Activated sludge Process. $NO_3^{-}-N$ concentration in 2nd. sedimentation basin effluent were 3.33% by Two-step Aeration System and 2.36% by Activated Sludge Process. From this result, Two-step Aeration System was proved more advantageous treatment process for nitrification than Activated Sludge Process. The fluctuation range of BOD, COD and SS concentration in 2nd sedimentation basin effluent $16~33mg/{\ell}$, $15~23mg/{\ell}$ and $14~22mg/{\ell}$ by Two-step Aeration System was smaller than $16~57mg/{\ell}$, $15~25mg/{\ell}$ by Activated sludge Process. Overall the fluctuation range in 2nd sediment basin effluent by was smaller than by Activated Sludge Process. As a result, it is possible for this Two-step Aeration with no facility investment and a little of operation condition change in a conventional sewage treatment plant to get stability and nitrification of treatment water quality.

  • PDF

정수 슬러지 발생량 조사 및 슬러지 처리시설의 공정평가 (Research of Sludge Quantity and Evaluation of Sludge Handling Facilities in Water Treatment Plants)

  • 문성용;김승현
    • 상하수도학회지
    • /
    • 제18권3호
    • /
    • pp.279-290
    • /
    • 2004
  • Sludge quantity has increased at "A"water treatment plant due to deterioration of raw water quality and GAC installation. Increased sludge resulted in overloading on sludge handling facilities. The object of this study is to survey sludge quantity and capacity of sludge handling facilities at "A"water treatment plant. Measured quantity of sedimentation sludge considerably exceeded the design capacity of sludge holding basin. Sludge holding basin was properly designed, but low concentration of sludge discharged from sedimentation basin caused production of large volume of the sludge. Timer operated control system for sludge withdrawal unit and leakage through a control valve were suspected to cause the low concentration. Augmentation of the control system by a turbidity meter and addition of a new control valve successfully reduced the sludge volume enough to satisfy the design capacity of sludge holding basin. Unlike sedimentation sludge, measured quantity of washwater was considerably less than the design capacity of washwater basin because it was over-designed.

Effects of ultrasound coupled with potassium permanganate pre-treatment of sludge on aerobic digestion

  • Demir, Ozlem
    • Advances in environmental research
    • /
    • 제5권4호
    • /
    • pp.251-262
    • /
    • 2016
  • The biodegradability and decomposition efficiencies increase with the pre-treatment of sludge in a digestion process. In this study, the feasibility of ultrasound coupled with potassium permanganate oxidation as a disintegration method and digestibility of aerobic reactor fed with disintegrated sludge with ultrasound coupled potassium permanganate were investigated. The first stage of the study focused on determining the optimum condition for ultrasonic pre-treatment for achieving better destruction efficiency of sludge. The second part of the study, the aerobic digestibility of sludge disintegrated with ultrasound and potassium permanganate oxidation alone and combined were examined comparatively. The results showed that when 20 min of ultrasonic pre-treatment applied, the specific energy output was 49384 kJ/kgTS with disintegration degree of 58.84%. During the operation of aerobic digester, VS/TS ratios of digesters fed with disintegrated sludge decreased indicating that disintegration methods could obviously enhance aerobic digestion performance. The highest reduction in volatile solids was 75% in the digester fed with ultrasound+potassium permanganate disintegrated sludge at the end of the operation compared to digester fed with raw sludge. Total Nitrogen (TN) and Total Phosphorus (TP) levels in sludge supernatant increased with this combined method significantly. Besides, it promoted the production of ${\bullet}OH$, thus enhancing the release of Carbon (C), Nitrogen (N) and Phosphorus (P) from the sludge. Disintegration with all methods used in this study could not improve Capillary Suction Time (CST) reduction in disintegrated digesters during the operation. The results demonstrated that the combined ultrasound treatment and potassium permanganate oxidation method improves the biodegradability compared to control reactor or their single application.

산 가수분해에 의한 폐활성슬러지 분해 (Disintegration of Waste Activated Sludge by Acid Hydrolysis)

  • 팟차리야 자이팍디;안영희
    • 생명과학회지
    • /
    • 제33권1호
    • /
    • pp.82-90
    • /
    • 2023
  • 하수와 산업폐수를 처리하는데 생물학적 공정이 전세계적으로 이용된다. 생물학적 공정은 복합미생물로 구성된 슬러지를 사용한다. 슬러지 미생물이 성장함에 따라 폐수처리공정에서는 잉여슬러지가 발생한다. 잉여슬러지의 일부는 미생물을 보충하기 위해 폐수처리공정에 반송되지만 나머지는 폐기물로서 처리된다. 매년 전세계적으로 폐수발생이 증가함에 따라 폐수처리장의 수도 증가하여 많은 양의 폐슬러지가 생산된다. 따라서 폐슬러지에 대한 관리와 처리가 중요하다. 폐슬러지 처리비용은 폐수처리장 총운영비의 50-60%를 차지한다고 보고되었다. 슬러지 분해기술은 폐슬러지의 부피를 최소화하고 유용한 성분(예, P, N, 용해성 유기물)을 회수할 수 있는 새로운 기술이다. 물리적, 화학적, 그리고 생물학적 처리 또는 복합 처리에 기반을 둔 다양한 슬러지분해방법들이 개발되었다. 본 총설은 슬러지 분해방법들 중에서 비교적 덜 연구된 산 가수분해에 의한 슬러지 분해에 대해 중점적으로 다루었다. 본 총설에서 다룬 정보는 폐슬러지 처리를 위한 더 나은 기술을 개발하고 이식하는데 유용하게 사용될 것이다.

잉여슬러지의 초음파 처리에 의한 혐기성 소화에서의 메탄생성 특성 연구 (Characteristics of Anaerobic Methane Production by Ultrasonic Treatment of Excess Sludge)

  • 이종학;정태영;노현석;김동진
    • 한국물환경학회지
    • /
    • 제26권5호
    • /
    • pp.810-815
    • /
    • 2010
  • Ultrasonic sludge pre-treatment has been studied to enhance the performance of anaerobic digestion by increasing sludge hydrolysis which is regarded as the rate-limiting-step of anaerobic digestion. In this study, the effect of ultrasonic pre-treatment on sludge hydrolysis (solubilization) and methane production was investigated. Sludge solubilization efficiency increased with ultrasonic energy input. However, it is uneconomical to apply more than 720 kJ/L as the solubilization efficiency per energy input declines afterwards. Volatile fatty acids concentration increased after the ultrasonic sludge hydrolysis. Anaerobic batch digestion showed that methane volume reached 64.7 and 84.5 mL after 18 days of incubation with the control sludge and ultrasonically hydrolyzed sludge, respectively. Methane production potential, maximum methane production rate, and the lag time of modified Gompertz equation were changed from 70 mL, 6.4 mL/day, and 1.2 days to 89 mL, 9.6 mL/day, and 0.5 day, respectively, after the ultrasonic sludge treatment. The results proved that ultrasonic pre-treatment contributed significantly not only for the methane production but also for the reduction of anaerobic digestion time which is critical for the performance of anaerobic sludge digestion.