• Title/Summary/Keyword: Sludge settling

Search Result 110, Processing Time 0.032 seconds

A Study on the Coagulation of Wastewater Containing Fine Silica Particles with the Waste Slurry from Soda Ash Manufacturing Industries (소오다회 제조 공장의 폐슬러리를 이용한 미세 실리카 함유 폐수의 응집에 관한 연구)

  • Jun, Se Jin;Yim, Sung Sam
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1073-1078
    • /
    • 1999
  • The objectives of this study are to examine the applicability of waste slurry from soda ash manufacturing industries as a coagulant for the treatment of wastewater containing fine silica particles, and to reduce the cost of wastewater treatment containing silica. Acceptable water quality can be obtained with a little dosing of waste slurry by gelation before the coagulation process so it could be concluded that the waste slurry from soda ash can be used as a coagulant. Based on the results of experiments, the optimum pH of gelation for silica in wastewater was around five and the treatment process with the gelation of silica could reduce the chemical dosage and waste sludge after coagulation. Dewatering and settling characteristics of the floc after coagulation with the waste slurry are better than those of the floc after coagulation with the lime milk only.

  • PDF

Treatment of Oil Contaminated Groundwater Using DAF and Fenton Oxidation Process (DAF와 펜톤 산화 공정을 이용한 유류 오염 지하수 처리)

  • Lee, Chaeyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.49-55
    • /
    • 2010
  • The oil spill occurred frequently due to probably the increased consumption of oil as the energy source and the raw materials of various chemicals. For the treatment of oil contaminated groundwater, DAF(Dissolved Air Flotation) is being used but the removal efficiency is low. Therefore it is necessary to reduce the free phase oil, oil-in water type or water-in oil type emulsified oil, and soluble oil which are the main sources of contaminated groundwater. In this study, treatment of contaminated groundwater was performed using the Fenton oxidation process. The optimum conditions for the removal of THP(Total Petroleum Hydrocarbon) were 3 of pH, 25mM of $H_2O_2$ concentration and 25mM of $Fe^{2+}$ concentration. THP and COD(Chemical Oxygen Demand) concentrations decreased less than 1.5mg/L and 40.0mg/L in 7 minutes using DAF and Fenton oxidation process. However it is necessary to install the settling basin as the sludge concentration increased approximately 5 times.

A study on the estimation of unit load generation and discharge from livestock resources of piggery (돼지 축분자원화물의 발생 및 배출부하 원단위 산정에 관한 연구)

  • Han, Gee-Bong;Kang, Young-Hee;Yoon, Ji-Hyun;Rim, Jay-Myoung;Won, Chul-Hee;Choi, Seung-Chul
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2006
  • In this study, the characterization of unit load generation and discharge from various type stall of piggery was conducted by investigation and analysis of contaminants loading from piggery urine, manure and wastewater. The results are summarized as follows: The unit load generation of filth increases as piggery grow older, but there was not large enough difference among those values of unit load evaluated for various stall types if mean values of each type of stall are considered. The generation amounts of manure and urine were total 4.57kg/head/d of 1.49kg manure/head/d and 3.08kg urine/head/d with consideration of 3 seasons and live weight. The finalized mean unit load generation of filth were estimated at BOD 199.5g/head/d, $COD_{cr}\;413.5g/head/d$, T-N 27.8g/head/d, T-P 5.3g/head/d with consideration of seasons and the type of stalls. The wastewater unit loads discharged from cement type stall were estimated at BOD 31.3g/head/d, $COD_{cr}\;95.6g/head/d$, T-N 8.9g/head/d, T-P가 3.1g/head/d. The sum of manure unit load generation considered with manure collection ratio(80%, 90%) and wastewater unit load was almost similar when compared to the unit load discharged from slurry type stall even though more or less difference were appeared according to each contaminants and parameters.

  • PDF

Study on Removal Efficiency of Complex Wastewater from Agricultural and Industrial Plant for Advanced Treatments (고도처리를 위한 농공단지 복합폐수의 처리효율 특성에 관한 연구)

  • Seo, Tae Won;Kim, Moon Suk;Park, Young Dal;Cho, Wook Sang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.53-65
    • /
    • 2012
  • This study was focused on removal efficiency of complex (or mixed) wastewater from agricultural and industrial plant for advanced treatments by HBR-II process, that was well known to be suitable to the treatment of livestock wastewater. The main purpose of this study was intended to evaluate the applicable feasibility of the HBR-II for revamping the present activated sludge process to the advanced one. And also, the settling study including the batch typed experimental column tests was performed to evaluate the coagulation stability of organic colloidal particles in wastewater. The mid-scale plant of HBR-II process between pilot and laboratory was used for this study. As F/M ratio remains constant in the range of 0.20~0.25 $BOD_5/Kg{\cdot}MLSS/Day$, the efficiency of biological treatment increased. It has been shown that the results of biodegradation study were, for removal efficiency(%), $BOD_5$ 98.4%, $COD_{Mn}$ 92.9%, SS 97.5%, T-N 91.3%, T-P 82.3%, respectively, which were relatively higher than other processes. From this study, HBR-II process would be well applied to the biological treatment of agricultural and industrial complex wastewater.

Nitrogen Removal Characteristic of Excreta Wastewater Using SBR and MBR Processes (SBR 및 MBR 공정을 이용한 분뇨폐수에서의 질소제거 특성)

  • Jung, Jin-Hee;Yoon, Young-Nae;Lee, Seul-Kee;Han, Young-Rip;Lee, Seung-Chul;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1485-1491
    • /
    • 2015
  • There are two treatment processes that are currently applied to ships are the biological treatment process using the activated sludge and the electrochemical treatment. However, neither of them are able to remove both nitrogen and phosphorus due to their limited ability to remove organic matters, which are main causes of the red tide. This study was conducted to identify the characteristics of nitrogen removal factors from manure wastewater by replacing the final settling tank in SBR (Sequencing Batch Reactor) process and applying immersion type hollow fiber membrane. SBR process is known to have an advantage of the least land requirement in special environment such as in ship and the immersion type hollow fiber membrane is more stable in water quality change. As the result, the average in the cases of DO (Dissolved Oxygen) is 2.9(0. 6~3.9) mg/L which was determined to be the denitrifying microorganism activity in anaerobic conditions. The average in the cases of ORP (Oxidation Reduction Potential) is 98.4~237.3 mV which was determined to be the termination of nitrification since the inflection point was formed on the ORP curve due to decrease in the stirring treatment after the aeration, same as in the cases of DO. Little or no variation in the pH was determined to have positive effect on the nitrification. T-N (Total Nitrigen) removal efficiencies of the finally treated water were 71.4%, 72.3% and 66.5% in relatively average figures, thus was not a distinct prominence. In being applied in ships in the future, the operating conditions and structure improvements are deemed necessary since the MEPC (Marine Environment Protection Committee). 227(64) ship sewage nitrogen is less than the standard of 20 Qi/Qe mg/L or the removal rate of 70%.

Technical Evaluation of MBR Process for the Wastewater Treatment of Beverage Fabrication Processes (음료수 제조 공정 폐수의 MBR 처리 기술 평가)

  • Jung, Cheol Joong;Park, Jong Min;Kim, Youn Kook
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • Manufacturing facility for non-alcoholic drink, the parts of the food industry, disposes wastewater which includes high organic concentration and low nitrogen, phosphorus concentration. For this kind of wastewater, the treatment plant consists mainly of aerobic reactor and chemical coagulation process. And sand-filter or activated carbon process is normally installed further. However, aerobic reactor must have long HRT to treat high concentration of organic contaminant included in this wastewater, so the large site area is required. And settling tank which is normally applied for wastewater treatment facility has some problems such as water quality degradation caused by the sludge spill. To solve these problems, we applied MBR system for the wastewater. And the MBR pilot plant was installed nearby the wastewater treatment facility of W food factory and operated during long term to evaluate treatment efficiency. This plant was operated about 3 months and than the result was 97% of organic removal rate on conditions of flow rate $20m^3/day$, HRT 29 hr, recycle 4Q. However, contaminant removal ratio of bio-reactor decreased and TMP of membrane increased rapidly on more conditions.

Performance Enhancement Study of a Final Clarifier by the Optimum Design of Inlet and Baffle Condition (유입구 및 정류벽 최적설계에 의한 최종 침전지 성능 개선 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Jung, Sung-Hee;Gang, Dong-Hyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.177-183
    • /
    • 2005
  • The effluent quality is directly affected by the separation of biological solids in a final clarifier because the majority of discharged $BOD_5$ and SS are virtually dependent on the results of biological solids in the sedimentation tank effluent. If a final clarifier is effectively designed and operated, the desired goal of clarification for wastewater can be achieved together with the cost reduction in the treatment of wastewater. To this end flow characteristics and the removal efficiency of SS are numerically investigated especially by the change of the inlet position and the installation of baffle to improve the performance of a rectangular final clarifier. The 2-D computer program developed in a rectangular coordinates has been successfully validated against experimental residence time distribution(RTD) curves obtained by tracing radio-isotope. The lowering of the inlet position weakens the density current and induces the settling of SS in the front zone of a clarifier. Thus the decreased traveling distance of the sludge increases the removal efficiency of SS in the effluent. The inlet baffle installed in the front region of clarifier prevents the short circuiting flow and induces to flow into the dense underflow, which eventually improves the effluent quality. In the case of lower inlet position, however, installation of baffle results in degradation of effluent quality. Consequently it is strongly recommended that in-depth numerical study be performed in advance for optimizing a clarifier design and retrofitting to improve effluent quality in a final clarifier.

A Study of Fluoride Adsorption in Aqueous Solution Using Iron Sludge based Adsorbent at Mine Drainage Treatment Facility (광산배수 정화시설 철 슬러지 기반 흡착제를 활용한 수용액상 불소 흡착에 관한 연구)

  • Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.709-716
    • /
    • 2021
  • In this study, an adsorbent prepared by natural drying of iron hydroxide-based sludge collected from settling basin at a mine drainage treatment facility located in Gangneung, Gangwon-do was used to remove fluoride in an artificial fluoride solution and mine drainage, and the adsorption characteristics of the adsorbent were investigated. As a result of analyzing the chemical composition, mineralogical properties, and specific surface area of the adsorbent used in the experiment, iron oxide (Fe2O3) occupies 79.2 wt.% as the main constituent, and a peak related to calcite (CaCO3) in the crystal structure analysis was analyzed. It was also identified that an irregular surface and a specific surface area of 216.78 m2·g-1. In the indoor batch-type experiment, the effect of changes in reaction time, pH, initial fluoride concentration and temperature on the change in adsorption amount was analyzed. The adsorption of fluoride showed an adsorption amount of 3.85 mg·g-1 16 hours after the start of the reaction, and the increase rate of the adsorption amount gradually decreased. Also, as the pH increased, the amount of fluoride adsorption decreased, and in particular, the amount of fluoride adsorption decreased rapidly around pH 5.5, the point of zero charge at which the surface charge of the adsorbent changes. Meanwhile, the results of the isotherm adsorption experiment were applied to the Langmuir and Freundlich isotherm adsorption models to infer the fluoride adsorption mechanism of the used adsorbent. To understand the thermodynamic properties of the adsorbent using the Van't Hoff equation, thermodynamic constants 𝚫H° and 𝚫G° were calculated using the adsorption amount information obtained by increasing the temperature from 25℃ to 65℃ to determine the adsorption characteristics of the adsorbent. Finally, the adsorbent was applied to the mine drainage having a fluoride concentration of about 12.8 mg·L-1, and the fluoride removal rate was about 50%.

Characteristics and Control of Microthrix Parvicella Bulking in Biological Nutrient Removal Plant (생물학적 영양소제거공정에서 Microthrix Parvicella에 의한 Bulking 특성 및 제어)

  • Lee, H.;Ahn, K.
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1101-1106
    • /
    • 2006
  • Many BNR (Biological Nutrient Removal) plants have experienced a bulking problem, mainly due to the growth of filamentous organisms, particularly during the winter months. This study investigated the problem of bulking due to the growth of M. parvicella both at a full-scale municipal wastewater treatment plant and a pilot scale plant located in the C city. The full-scale facility was operated at a flow rate of $51,000m^3/d$, an F/M (Food-to-Microorganism) ratio of 0.12 kgBOD/kgMLVSS/d and an SRT (Solids Retention Time) higher than 25 days, respectively. This plant experienced bulking and foaming problems at low temperatures below $15^{\circ}C$ since it was retrofitted with the BNR system in 2003. The pilot plant employed had an identical process configuration as the full scale one and used the same wastewater source. It was operated at a flow rate of $3.8m^3/d$, temperatures between 10 to $25^{\circ}C$ and SRTs between 10 and 25 days. At full scale, the M. parvicella growth and SVI (Sludge Volume Index) patterns were studied in conjunction with temperature variations. At pilot scale, DO and SRT variations were also explored, in addition to the filamentous bacteria growth and SVI patterns. During the full-scale investigation, over a 3 year period, it was noted that the SVI was maintained within acceptable operational values (i.e. under 160) during the summer months. Moreover settling in the secondary clarifiers was good and was not affected by the presence of M. parvicella. In contrast, at low mean temperatures during winter, the SVI increased to over 300. Overall, as the temperature decreased, the predominance of M. parvicella became apparent. According to this study, M. parvicella growth could be controlled and SVI could drop under 160 by a change in operational conditions which involved an increase in DO concentration between 2 and 4 mg/L and a decrease in SRT to less than 20 days.

Effects of Water Quality Improvement by Porosity of Fill Materials in Mattress/Filter System (Mattress/Filter 채움재의 공극률에 따른 하천수질 개선효과)

  • Ko, Jin Seok;Lee, Sung Yun;Heo, Chang Hwan;Jee, Hong Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.51-60
    • /
    • 2006
  • Water quality improvement in mattress/filter system using porous material like slag from industrial activity and zeolite that has been studied for environment improvement and pollution abatement is very useful in polluted stagnant stream channel. Slag is consisted of CaO, $SiO_2$, $Al_2O_3$ and $Fe_2O_3$. Slag with large specific surface area of porosity has been used such as sludge settling and adsorptive materials. Because slag is porous, it can be used for purification filter. As slag is used as filled materials of mattress/filter system and the system has good advantages for the waste water treatment, water recycling, and the improvement of water quality at the same time and so on. Because zeolite has much advantage of cation exchange, adsorption, catalyst and dehydration characteristics, It is used for environment improvement of livestock farms, treatment of artificial sewage and waste water, improvement of drinking water quality, radioactive waste disposal and radioactive material pollution control. In this study, according to verifying effects of water quality improvement of fill materials by porosity that 38.6%, 45.8% and 49.8% respectively in the stagnant stream channel, water quality monitoring of inflow and outflow was conducted on pH, DO, BOD, COD, SS, T-N and T-P. Mattress/filter system was able to accelerate water quality improvement by biofilter as waste water flows through gap of mattress/filter fill materials and by contact catalysis, absorption, catabolism by biofilm. Mattress/filter system used slag and zeolite forms biofilm easily and accelerates adsorption of organic matter. As a result, mattress/filter system increases water self-purification and accelerates water quality improvement available for stream water clean-up.