• Title/Summary/Keyword: Sludge reduction

Search Result 315, Processing Time 0.019 seconds

Influence of Organic Acids Residual Concentration by the Change of F/M Ratio on Sludge Settleability in Advanced Sewage Treatment Processes (하.폐수 고도처리시 F/M비 변화에 따른 유기산 잔류 농도가 슬러지 침강성에 미치는 영향)

  • Park, Young-Ki;Kim, Young-Il;Kim, Sl-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2006
  • The biological nutrient treatment is formed with repetition and rearrangement of anaerobic, anoxic and oxic tank. In this case, VFAs is generated in the anaerobic tank and the anoxic tank. The VFAs is an important factor for removal of nitrogen and phosphate and SVI. So, in this study I investigated to find a relationship among the generation rate of the VFAs according to the change of F/M ratio and the characteristic which can eliminate organic matter and nitrogen according to the change of residual concentration of the VFAs and the efficiency of the process and also SVI in wastewater treatment. $A^2/O$ process was used for wastewater treatment. F/M ratio was under the control of the change of MLSS concentration. When the F/M ratio was changed from 0.16 to 0.08 kg-BOD/kg-MLSS/day, the VFAs's production volume increased based on the reduction of F/M ratio in batch reaction. And the residual concentration of the VFAs decreased at first and then increased later. SVI and SS were high when F/M ratio was $0.16kg/kg{\cdot}d$ and showed stable status when F/M ratio decreased $0.11{\sim}0.13kg/kg{\cdot}d$. However, SVI and SS continuously increased with decrease of F/M ratio and were high at $0.08kg/kg{\cdot}d$. In the result of comparison between residual concentration of the VFAs and denitrification rate in anoxic tank, the less residual volume of the VFAs was in anoxic tank, the higher denitrification ratio became. The optimal residual-concentration of the VFAs considering SVI and removal efficiency of nitrogenwas $1.4{\sim}2.2mg/L$. At that time F/M ratio was $0.11{\sim}0.13$ kg-BOD/kg-MLSS/day.

Enhanced hydrogen fermentation of food waste (음식물쓰레기를 이용한 수소발효 시 효율향상에 관한 연구)

  • Han, Sun-Kee;Kim, Hyun-Woo;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.105-113
    • /
    • 2003
  • Successful operation of a reactor can be accomplished when it is operated at proper D depending on the state of degradation. Operation at high D leads to the washout of biomass in the reactor while operation at low D leads to product inhibition due to the accumulation of excess VFA. These appear to limit the production of hydrogen to reach a higher level. Operation by D control was performed to improve the efficiency of hydrogen fermentation of food waste. Although simple organic matters were rapidly degraded in the early stage (day 1-2), proper VFA concentration and pH values were kept in the reactor at D of $4.5d^{-1}$, which was previously reported to be optimum initial D. High butyrate/acetate (B/A) ratios over 3.2 were obtained. Without D control, the reduction of simple organic matters after day 2 caused the decrease of VFA production and the increase of pH. Hydrogen production also decreased, as microbial proliferation was less than microbial loss by washout. However, the reactor performance was dramatically improved at D control from 4.5 to $2.3d^{-1}$. It showed the highest B/A ratios over 2.0 among the reactors on day 4-7. The second hydrogen peak appeared on day 4, resulting in the highest fermentation efficiency (70.8%) among the reactors. It was caused by the enhanced degradation of slowly degradable matters. The COD removed was converted to hydrogen (19.3%), VFA (36.5%), and ethanol (15.0%). Therefore, the strategy using D control, depending on the state of degradation, was effective in improving the efficiency of hydrogen fermentation.

  • PDF

Development of an Solid Separation System for Pig Slurry (돈 슬러리용 고형물 분리시스템 개발)

  • 김민균;김태일;최동윤;백광수;박진기;양창범;탁태영
    • Journal of Animal Environmental Science
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • This study was conducted to develope the new solid separating system which can be efficiently and economically removed the solid parts in high pollutants concentration of pig slurry. The pollutants concentration, BOD$_{5}$ , COD and SS of the slurry used in this study was 15,990($\pm$2,389)mg/l, 20,004($\pm$5,512)mg/l and 26,486($\pm$5,935)mg/l, respectively. After removal of solid part in slurry, the pollutants concentration, BOD$_{5}$, COD and SS was change into 5,617($\pm$690)mg/l, 5,553($\pm$633)mg/land 1,456($\pm$341)mg/l, respectively in the Fixed biological membrane tank. The reduction of the pollutants concentration of suspend liquid through membrane will be allowed to greatly improve the water purification by an Activated sludge method. This separating system consisted of a temporary storage, a circulating tank and a Fixed Biological membrane tank. A temporary storage which has a draining system of screw type and an aeration device played a tremendous role in draining the solid by filled an aeration of 0.3 l/min. A Fixed Biological membrane tank of which a styrofoam filled in a 2/3 volume as a Biological media was fixed by a stainless steel net (pore size : 0.5mm) to separate the liquid layer of influx in them. The separating system efficiency factors were the speed of screw motor, cycle number of slurries in a circulating tank and moisture contents of solid effluent through the screw path. Although the pollutants concentration was very variable in temporary storage, the final concentration of $BOD_5$ and SS, except COD of the suspended liquid in a Fixed biological membrane were not different regardless of cycle number of a circulating tank. Moisture contents of effluent from temporary storage was 73% under the speed 1 ppm of screw motor and 62% under the 1/4rpm of it.

  • PDF

Environmental Leachability of Electric Arc Furnace Dust for Applying as Hazardous Material Treatment (제강분진을 이용한 유해물질 처리기술 적용을 위한 안전성 평가)

  • Lee, Sang-Hoon;Kang, Sung-Ho;Kim, Jee-Hoon;Chang, Yoon-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • Iron manufacturing process involves production of various by-product including slag, sludge, sintering and EAF(Electric Arc furnace dust). Some of the by-products such as EAF and sintering dust are disposed of as waste due to their high heavy metal contents. It has been notice for many years that the EAF dust also contain about 65% of Fe(0) and Fe(II) and then the possible utilization of the iron. One possibility is to apply the EAF as a lining material in conjunction with clay or HDPE liners, in waste landfill. The probable reaction between the leachate containing toxic elements such as TCE, PCE dioxine and $Cr^{6+}$ is reduction of the toxic materials in corresponding to the oxidation of the reduced iron and therefore diminishing the toxicity of the leachate. It is, however, prerequisite to evaluate the leaching characteristics of the EAF dust before application. Amelioration of the leachate would be archived only when the level of toxic elements in the treated leachate is less than that of in the untreated leachate. Several leaching techniques were selected to cover different conditions and variable environments including time, pH and contact method. The testing methods include availability test, pH-stat test and continuous column test. Cr and Zn are potentially leachable elements among the trace metals. The pH of the EAF dust is highly alkaline, recording around 12 and Zn is unlikely to be leached under the condition. On the contrary Cr is more leachable under alkaline environment. However, the released Cr should be reduced to $Cr^{3+}$ and then removed as $Cr(OH)_3$. Removal of the Cr is observed in the column test and further study on the specific reaction of Cr and EAF dust is underway.

Evaluation Methods for the Removal Efficiency of Physical Algal Removal Devices (물리적 녹조 제거 장치의 제거 효율 평가 방안)

  • Pyeol-Nim Park;Kyung-Mi Kim;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.419-430
    • /
    • 2023
  • In response to the periodic occurrence of cyanobacterial blooms in Korean freshwaters, various types of cyanobacteria removal technologies are being developed and implemented. Due to the differing principles behind these technologies, it is difficult to compare and evaluate their removal efficiencies. In this study, a standardized method for evaluating cyanobacteria removal efficiency was proposed by utilizing the results of removal operations using a mobile cyanobacteria removal device in the Seohwacheon area of Daechung Reservoir. During removal operations, the decrease in chlorophyll-a (chl-a) concentration (ΔChl-a) in the working area was calculated based on the amount of collected sludge, the efficiency rate, and the concentration of chl-a. Additionally, the required working days (WD) to reduce the chl-a concentration to 1 mg/m3 in the target area was calculated based on the area of the target zone, the maximum daily working area, and the efficiency rate. A method for calculating the cyanobacteria removal capacity was proposed based on the reduction rate of chl-a concentration in the water before and after the operation, the treatment capacity of the removal technology, and the water volume of the target area. The cyanobacteria removal capacity of the mobile cyanobacteria removal device used in this study was 6.64%/day (targeting the Seohwacheon area of Daechung Reservoir, approximately 500,000 m2), which was higher compared to other physical or physicochemical cyanobacteria removal technologies (0.02~4.72%/day). Utilizing the evaluation method of cyanobacteria removal efficiency presented in this study, it will be possible to compare and evaluate the cyanobacteria removal technologies currently being applied in Korea. This method could also be used to assess the performance and efficiency of physical or physicochemical combined cyanobacteria removal techniques in the "Guidelines for the Installation and Operation of Algae Removal Facilities and the Use of Algae Removal Agents" operated by the National Institute of Environmental Research.