• Title/Summary/Keyword: Sludge ash

Search Result 177, Processing Time 0.03 seconds

Quality Characteristic of lightweight aggregate using sewage sludge and fly-ash for non-structural concrete under different condition (소성조건 변화에 따른 하수슬러지와 석탄회를 이용한 비구조용 경량골재의 품질 특성)

  • Kim, Dug-Mo;Mun, Kyoung-Ju;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.201-204
    • /
    • 2004
  • The purpose of this study is recycling of sewage sludge and fly-ash. In this experiment, green aggregates, which is a mixture of sewage sludge and clay and fly-ash, with different content of sewage sludge (up to $80wt\%$). Then they were burned in different soak temperatures from $1190^{\circ}C\;to\;1290^{\circ}C$ with changed soak time and heating rate at 5, 7, 10 minutes and $20^{\circ}C/min$, $30^{\circ}C/min$ respectively in order to produce lightweight aggregate (LWA). Data of both experiment series were generated to evaluate the quality of LWA as well as the relationship between burning condition and product's quality.

  • PDF

Synthesis of Zeolite from Sewage Sludge Incinerator Fly Ash by Hydrothermal Reaction in Open System (Open System 수열반응을 통한 하수슬러지 소각 비산재의 Zeolite 합성가능성)

  • Lee, Je-Seung;Eom, Seok-Won;Choi, Han-Young
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.317-324
    • /
    • 2007
  • The sewage treatment sludge disposal has become a serious environmental problem because of restricted direct land-filling and oceandumping in spite of their large amounts discharged. So the recycling of sewage treatment sludge is very useful alternative for waste management. Here, we studied the feasibility of zeolite synthesis in open system from the sewage treatment sludge incinerator fly ash by means of hydrothermal synthesis. We considered the concentration of NaOH, reaction time, reaction temperature and reaction step as synthesis variables. The phase of zeolite products was identified by X-ray diffractometer(XRD) and ammonium ion exchange test was performed for the raw fly ash and two zeolite products(Z-3 and Z-5). In leaching test of the raw fly ash, hazard metal is detected very low level compared with regulatory leaching test standard. But in total recoverable test, the total contents of the fly ash were very high in terms of the standard for waste-derived fertilizer. Through hydrothermal reaction, small amount of zeolite P was synthesied in 1 N of NaOH solution and relatively large amount of hydroxysodalite was synthesied in 3 N and 5 N of NaOH solution with similar peak intensity. Addition of an aging step in the synthesis didn't increase the amount of zeolite phase. Maximum $NE_4^+-N$ exchange capacity is 1.49 mg $NH_4^+-N/g$ in Z-3 and 1.38 mg $NH_4^+-N/g$ in Z-5. Most of the ammonium ion is exchanged in 30 minutes and disorption did not occur until 5 hours.

Incorporation of water sludge, silica fume, and rice husk ash in brick making

  • Hegazy, Badr El-Din Ezzat;Fouad, Hanan Ahmed;Hassanain, Ahmed Mohammed
    • Advances in environmental research
    • /
    • v.1 no.1
    • /
    • pp.83-96
    • /
    • 2012
  • The water sludge is generated from the treatment of water with alum. Disposing of sludge again to the streams raises the concentrations of aluminum oxides in water, which has been linked to Alzheimer's disease. The use of water treatment plant (WTP) sludge in manufacturing of constructional elements achieves both the economical and environmental benefits. Due to the similar mineralogical composition of clay and WTP sludge, this study investigated the complete substitution of brick clay by sludge incorporated with some of the agricultural and industrial wastes, such as rice husk ash (RHA) and silica fume (SF). Three different series of sludge to SF to RHA proportions by weight were tried, which were (25: 50: 25%), (50: 25: 25%), and (25: 25: 50%), respectively. Each brick series was fired at 900, 1000, 1100, and $1200^{\circ}C$. The physical and mechanical properties of the produced bricks were then determined and evaluated according to Egyptian Standard Specifications (E.S.S.) and compared to control clay-brick. From the obtained results, it was concluded that by operating at the temperature commonly practiced in the brick kiln, a mixture consists of 50% of sludge, 25% of SF, and 25% of RHA was the optimum materials proportions to produce brick from water sludge incorporated with SF and RHA. The produced bricks properties were obviously superior to the 100% clay control-brick and to those available in the Egyptian market.

Permeability Characteristics of Cement Mixtures with Powdered Sludge of Basalt in Jeju Island (제주도 현무암 석분슬러지를 포함한 시멘트 혼합체의 투수특성)

  • Lee, Yang-Gyu;Yun, Jung-Mann;Song, Young-Suk;Kim, Ki-Young;Hong, Kikwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.159-165
    • /
    • 2015
  • In this study, the coefficient of permeability for cement mixtures including the powdered sludge of basalt, sand or fly ash with different mixed ratios was measured in order to reuse the powdered sludge of basalt in Jeju Island as the cut off materials. As the permeability test results, the coefficient of permeability for the cement mixtures with fly ash was increased with increasing the fly ash contents. The amount of fly ash in the cement mixtures should be mixed with less than 8 %. Meanwhile, the coefficient of permeability for the cement mixtures with sand was increased with increasing the sand contents. The amount of sand in the cement mixtures should be mixed with less than 40 %. According to the comparison result of cement mixtures including fly ash or sand, it is more advantageous to put the sand into the cement mixtures, rather than mixing the fly ash.

SEM Analysis Property of Non-cement Light-weight Matrix according to Type and Mixing Ratio of Alkali Activator (알칼리자극제 종류 및 혼입율에 따른 무시멘트 경량 경화체의 SEM분석 특성)

  • Shin, Jin-Hyun;Kim, Tae-Hyun;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.161-162
    • /
    • 2017
  • As the use of cement increases with the development of modern society along with the increase of buildings, environmental pollution intensifies and researches on industrial byproducts are continuing. Research on blast furnace slag and fly ash as industrial byproducts is increasing, and research on industrial byproducts such as polysilicon sludge and paper ash used in this study is increasing. Blast furnace slag, which is one of the industrial byproducts, has been widely studied as a material used with cement. However, in this study, we fabricated lightweight matrix of polysilicon sludge and paper ash replaced based on blast furnace slag, and performed SEM analysis.

  • PDF

A Study on the Reusability of Incinerated Paper Mill Sludge Ash as Cement Additive (시멘트 혼화재로서 제지슬러지 소각재의 재활용 특성)

  • 주소영;연익준;이민희;박준규;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.2
    • /
    • pp.34-41
    • /
    • 2003
  • The purpose of this study is to examine the effect of stabilization disposal and recycling on incinerated paper mill sludge ash as cement additives. It was investigated chemical(pH, ICP, TGA XRD) and physical(PDA, SEM) characteristics of the incineration ash. And the pozzolanic characteristics of incineration ash was applied to cement as additive to increase the compressive strength. The results were that the pH characteristic of incineration ash was strong alkalinity, the content of silica and alumina as a pozzolanic material was 50.97%, and the average particle size was $5.03{\mu}m$ respectively. When the ash contents as cement additive were varied in 0~15%(wt) of cement weight to explore the effect of the compressive strength on the solidified cement mortar, the proper amount of the incineration ash substituted was about 5~l0%(wt). Therefore we found that using the incineration ash as cement additive obtains the recycling of waste material, the stabilization disposal, the reduction of waste disposal expense, and the protection of environmental problem, too.

The Dynamics Performance Evaluation for Type of Replacement Ratio of the Polysilicon Sludge and Fly ash (폴리실리콘 슬러지와 플라이애쉬 치환율별 역학성능 평가)

  • Moon, Ji-Hwan;Park, Jong-Pil;Kim, Gyu-Yong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.85-86
    • /
    • 2012
  • This application plan is hasty prepared with the actual condition in which the majority is reclaimed by the waste with the marine and the polysilicon sludge, that is the main raw material of the solar pannel support, does. In this research, by using OPC and Fly ash, the applicability as the blending material of the polysilicon sludge was analyze and it tried to contribute to the waste reduction afterward. The replacement ratio of the sludge was set to 5. 10, 15, 20(%) with the experiment based on the based test result and the air flow rate, liquidity, flexural strength, and compressive strength was measured. The liquidity was reduced in spite of as the replacement ratio of the sludge increased and the air flow rate increased.

  • PDF

A Study on the Chemical Composition and Structure of Sludge, Compost and Charcoal (폐수처리 슬럿지와 퇴비 및 목탄의 화학적 특성과 구조에 관한 연구)

  • 임기표;위승곤
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • To understand the chemical structure of sewer sludge in comparison with commercial compost and charcoal used as a soil improver, it was carried out to analyse their ash contents and metal ions, and to elucidate the chemical structure of their residuals after a sequential treatment of alcohol-benzene(1:2) extraction in Soxhlet, 3% HCl reflux and 79% H₂SO₄ hydrolysis, using CHNS analyzer and solid C-13 NMR spectrometer. The results obtained were as follows: 1. Ash content of sludge was about 46% that is higher than those of compost (17%) and charcoal (4%). 2. The residual of sludge after a sequential treatment of HCl and H₂SO₄ hydrolyses had high ash content about 23%, too. 3. The sludge seems to be suitable to the soil improver because the content of heavy metal ions in sludge was near the compost and below the organic fertilizer standard. 4. Elemental composition of sludge residual after HCl-H₂SO₄ hydrolyes was C/sub 56/H/sub 91/O/sub 12/N₂S = (C/sub 6/H/sub 10/O/sub 5/)/sub 7/(C/sub 6/H₄)/sub 7/C₂H/sub 43/O₂N₂S, similar to C/sub 103/H/sub 122/O/sub 33/N/sub 6/S = (C/sub 6/H/sub 10/O/sub 5/)/sub 6/(C/sub 6/H₄)/sub 10/C/sub 7/H/sub 22/O₃N/sub 6/S of compost. 5. The sludge residual had proved to have both considerable aliphatic and aromatic groups, but the compost residual to have mainly aliphatic groups and the charcoal to have mainly aromatic groups, through the peak analysis of solid C-13 NMR charts. 6. So, the sewer sludge is proved to have a considerable amount of aromaticity like in woody biomass containing lignin.

Microstructural properties of hardened cement paste blended with coal fly ash, sugar mill lime sludge and rice hull ash

  • Opiso, Einstine M.;Sato, Tsutomu;Otake, Tsubasa
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.289-301
    • /
    • 2017
  • The synergistic interactions of supplementary cementitious materials (SCMs) with ordinary portland cement (OPC) in multi-blended systems could enhance the mechanical and durability properties of concrete and increase the amount of cement that can be replaced. In this study, the characteristics of the hydration products as well as paste microstructure of blended cement containing 20% coal fly ash, 10% rice hull ash and 10% sugar mill lime sludge in quaternary blended system was investigated. Portlandite content, hydration products, compressive strength, pore size distribution and microstructural architecture of hydrated blended cement pastes were examined. The quaternary blended cement paste showed lower compressive strength, reduced amount of Portlandite phases, and higher porosity compared to plain hardened cement paste. The interaction of SCMs with OPC influenced the hydration products, resulting to the formation of ettringite and monocarboaluminate phases. The blended cement paste also showed extensive calcium silicate hydrates and calcium aluminate silicate hydrates but unrefined compared to plain cement paste. In overall, the expected synergistic reaction was significantly hindered due to the low quality of supplementary cementitious materials used. Hence, pre-treatments of SCMs must be considered to enhance their reactivity as good quality SCMs can become limited in the future.

A Study on The Comparison of Leaching Methods and Stability of Cement Mortar Solidified Cadmium sludge (시멘트고화에 의한 카드뮴슬러지의 안정성 및 용출실험방법 비교 검토)

  • 주소영;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.21-30
    • /
    • 2002
  • This study was Performed to evaluate the effective solidification of Cd sludge using cement and power plant fly ash as cement admixture, to identify the leaching characteristics of the heavy metal Cd sludge solidified, and to develope proper KLT(Korean Leaching Test) of hazardous waste. KLT was compared with EPT(Extraction Procedure Toxicity) and TCLP(Toxicity Characteristics Leaching Procedure). Fly ash contents ranged from 0% to 30% of cement weight. The experimental results showed that the optimum amount of fly ash replaced was 10% to 15% and KLT was less appropriate than EPA and TCLP. Also the purpose of the study was to suggest the modification factors on the leaching test currently used, based on the above mentioned aspects. The effects of pH, leaching time, leaching for agitating intensity, and leaching solvent were investigated. As the result of test, the leaching potential was relatively high when the pH and agitation intensity of leaching solution were 5 and 150rpm, respectively. Leaching time of six hours was found to be sufficient and the use of acetic acid as a leaching solvent is more useful in landfill site particularly.