• Title/Summary/Keyword: Sludge Volume Reduction

Search Result 44, Processing Time 0.032 seconds

Volume Reduction of Waste Water Sludge using Electrolysis (전기분해를 이용한 하수 슬러지 감량)

  • Lee, Byungheon;Bang, Myunghwan;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.264-270
    • /
    • 2006
  • In this research, volume reduction of activated sludge using electrolysis was studied to find an optimum condition using lab scale experiments. Wasted sludge was treated by electrolysis with controlling current density, chloride concentration, electrode distance, and reaction time. Volume of return sludge was reduced by 9.79% in average while maximum was 16.7%. Sludge volume reduction efficiency was affected by current density and reaction time. It was reversely proportional to the electrode distance. Especially current density was effective on the system performance significantly. Electric conductivity, salinity and COD were increased by electrolysis implying sludge disintegrated and converted to COD in part. An empirical equation for total solid removal efficiency by electrolysis was proposed by multiple linear regression analysis as: $TS_{rem}$(%) = 5.534 ${\times}$ current density (A/l) + 0.178 ${\times}$ reaction time (m) + 2.758.

Comparison of Effects of Rice Straw and Sewage Sludge Cake on Aerobic Composting of Food Wastes (음식물쓰레기의 호기성 퇴비화에 있어서 볏짚과 하수슬러지케이크가 미치는 영향에 관한 비교 연구)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.43-50
    • /
    • 2003
  • This study was performed to compare the effects of rice straw and towage sludge cake as bulking materials on temperature, pH, weight and volume reduction, porosity, C/N ratio, salinity, and conductivity in aerobic composting of food wastes. Volume ratios of food wastes to rice straw in reactor control, RS-1, RS-2, RS-3 and RS-4 were 4:0, 4:1, 4:2, 4:3 and 4:4, respectively. Weight ratios of food wastes to sewage sludge rake in reactor control, SL-1, SL-2, SL-3 and SL-4 were 4:0, 4:1, 4:2, 4:3 and 4:4, respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours aeration per day. The values of pH of food waters, rice straw and sewage sludge cake were 4.39, 7.40 and 5.79, respectively. The lowering of the volume ratio of food wastes to rice straw resulted in the high reaction temperature and the fast weight and volume reduction rates. The lowering of the weight ratio of food wastes to sewage sludge cake resulted in the slow weight and volume reduction rates. C/N ratio in control was larger than that in rice straw containing reactors, and that in rice straw containing reactors was larger than that in sewage sludge cake containing reactors. Salinity and conductivity in reactors were condensed and increased by reaction days.

Effects of Microwave Irradiation for Elutriated Acid Fermentation of Sewage Primary Sludge (하수 일차슬러지의 세정산발효 특성에 대한 Microwave 전처리의 영향)

  • Kwon, Koo-Ho;Lee, Won-Sic;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.498-503
    • /
    • 2007
  • The performance of elutriated acid fermentation to evaluate the effects of microwave irradiation and pH control as pretreatment was investigated. The MW pH 7 reactor which was used the pretreated primary sludge as microwave irradiation was operated at pH 7 and $35^{\circ}C$. The EAF pH 9 reactor was operated at pH 9 and $35^{\circ}C$ without pretreatment. The SCOD and VFAs production rate were 0.17 gSeOD/gVSrem. and 0.27 gVFAs as COD/gVSrem. in MW pH 7 reactor, 0.16 gSCOD/gVSrem. and 0.24 gVFAs as COD/gVSrem. in EAF pH 9 reactor, respectively. VS and Volume reduction were 54% and 48% in MW pH 7 reactor, 54.6% and 36% in EAF pH 9 reactor, respectively. A comparison of the microwave irradiation and controlled pH in elutriated acid fermentation showed that the former is more efficient in SCOD and VFAs production and it rises to slightly higher reduction in the volume of the sludge. In addition, E. coli. was not detected in the wasting sludge of MW pH 7 reactor. Based on the results, microwave irradiation appeared to be one of the viable options for generating class A sludge. According to the batch tests, sequencing batch test which was used the pretreated primary sludge as microwave was performed at pH 7 and $35^{\circ}C$, SCOD production was 0.16 gSCOD/gVSrem., VS reduction and volume reduction were 64% and 63%, respectively.

A Study on Volume Reduction of Waste Sludge by Aerobic Thermophilic Bacteria (호기성 호열미생물에 의한 하수슬러지 감량화 효율에 관한 연구)

  • Bae, Yoon-Sun;Kim, Soon-Young;Nam, Duck-Hyun;Park, Chul-Hwi;Kim, Jin-Su;Takada, Kazu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.497-505
    • /
    • 2005
  • Domestic Sewage Treatment Plants are mostly based on biological treatment, in which large amounts of excess sludge are generated and occupy about 40 ~ 60% of the total sewage treatment costs. Several methods for sludge treatment has been so far reported as upgrading biodegradation of sludge; heat treatment, chemical treatment, including thermo-alkali and ozone, mechanical treatment including ultrasonic pulverization. But, it has a limitation in case of reducing the amount of excess sludge which are already producted. In this study, application of excess sludge reduction process using thermophilic aerobic bacteria for activated sludge was examined. The research was carried out two different stage. one for a biological wastewater treatment and the other for a thermophilic aerobic solubilization of the waste sludge. A portion of excess sludge from the wastewater treatment step was into the thermophilic aerobic sludge solubilization reactor, in which the injected sludge was solubilized by thermophilic aerobic bacteria. The solubilized sludge was returned to the aeration tank in the wastewater treatment step for its further degradation. Sludge solubilization reactor was operated at $63{\pm}2^{\circ}C$ with hydraulic retention time(HRT) of 1.5 ~ 1.7 day. Control group was operated with activated sludge process(AS) and experiment group was operated with three conditions(RUN 1, RUN 2, RUN3). RUN 1 was operated with AS without sludge solubilization reactor. RUN 2 were operated with AS with sludge solubilization reactor to examine correlation between sludge circulation ratio and sludge reduction ratio by setting up sludge circulation ratio to 3. RUN 3 was operated with sludge circulation ratio of 3 and MLSS concentration of 1,700~2,000mg/L to examine optimum operation condition. The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge solubilization ratio and sludge reduction ratio were 53. 7%, 95.2% respectively. After steady state operation, average concentration of TBOD, SBOD, $TCOD_{Cr}$, $SCOD_{Cr}$, TSS, VSS, T-N, T-P of effluent were 4.5, 1.7, 27 .8, 13.8, 8.1, 6.2, 15.1, 1.8mg/L in the control group and were 5.6, 2.0, 28.6, 19.1, 9.7, 7.2, 16.1, 2.0mg/L in the experimental group respectively. They were appropriate to effluent standard of Sewage Treatment Plants.

Sludge Solubilization by Pre-treatment and its Effect on Methane Production and Sludge Reduction in Anaerobic Digestion (전처리 방법에 따른 슬러지 가용화가 혐기소화에서 메탄 생산과 슬러지 감량에 미치는 영향)

  • Kim, Dong-Jin;Kim, Hye-Young
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.103-109
    • /
    • 2010
  • Anaerobic digestion has been widely used for the treatment of sludge, which is generated from the municipal and industrial wastewater treatment, for its volume reduction and methane production. Many researches on sludge pre-treatment have been carried out in order to enhance the performance of anaerobic digestion by increasing the hydrolysis of sludge which is the rate limiting step of anaerobic digestion. In this study, the effect of pre-treatment on sludge hydrolysis(solubilization), methane production and sludge reduction by anaerobic digestion after thermal, ultrasonic, and thermal-alkali sludge treatment were compared. Thermal-alkali treatment showed 67 and 70% solubilization with municipal and industrial wastewater sludge, respectively, while ultrasonic treatment and thermal treatment gave similar solubilization efficiency of 40% or more. Methane content of the anaerobic digestion gas reached 45~70% and pretreated sludge gave higher methane content than the control sludge. Methane production of thermal, ultrasonic, and thermal-alkali pre-treatment gave 2.6, 2.7, 3.5 times of municipal control sludge and 3.5, 4.1, 4.2 times of industrial control sludge, respectively. Sludge reduction of pre-treated sludge after anaerobic digestion gave 5~19% point higher than that of control sludge, and thermal-alkali treatment showed higher reduction efficiency than thermal and ultrasonic treatment. The results proved that pre-treatment contributed significantly not only for the methane production but also for the cost reduction of sludge treatment and disposal, and thermal-alkali treatment gave the best performance for the sludge treatment.

Removal of sulfate ion from semiconductor wastewater by ettringite precipitation

  • Chung, Chong-Min
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.183-189
    • /
    • 2022
  • This study seeks towards an optimal way to control sulfate ions in semiconductor wastewater effluent with potential eco-toxicity. We developed a system based on ettringite (Ca6Al2(SO4)3(OH)12·26H2O). The basic idea is that the pH of the water is raised to approximately 12 with Ca(OH)2. After, aluminium salt is added, leading to the precipitation of ettringite. Lab-scale batch and continuous experiment results with real semiconductor wastewater demonstrated that 1.5 and 1 of stoichiometric quantities for Ca2+ and A3+ with pH above 12.7 could be considered as the optimal operation condition with 15% of sludge recycle to the influent. A mixed AlCl3 + Fe reagent was selected as the beneficial Al3+ source in ettringite process, which resulted in 80% of sludge volume reduction and improved sludge dewaterability. The results of continuous experiment showed that with precipitation as ettringite, sulfate concentration can be stably reduced to less than 50 mg/L in effluent from the influent 2,050 ± 175 mg/L on average (1,705 ~ 2,633 mg/L).

Thickening of Excess Sludge using Mesh Filter (메쉬 여과모듈을 이용한 잉여슬러지 농축)

  • Jung, Yong-Jun;Kiso, Yoshiaki;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.346-351
    • /
    • 2004
  • Because of being produced a great deal of excess sludges from biological wastewater treatment process, the subject regarding treatment and disposal of them has been significantly handled in real plants. It should be considered the alternative treatment with easy operating and cost effective process in rural areas. For the thickening of wasted activated sludge from small scale wastewater treatment facilities, thus, the provisional sludge thickening system was developed by the application of mesh filter module. Three meshes with different pore size(100, 150, $200{\mu}m$) were prepared for filter modules that were used to withdraw effluent from thickening system. A filter module with $100{\mu}m$ mesh was chosen as the most effective thickening material in the viewpoint of volume reduction and effluent quality: the volume reductions of initially injected sludge with 3,600 mg/L and 9,100 mg/L were 95% and 85%, respectively, and the filtered effluents were enough good to be shown below 1.0 mg/L of SS and 1.0 NTU of turbidity. Since the filtration of thickening was influenced by the cake layer formed on mesh filter module and this system was operated in the combination of sludge thickening with gravity settling, the filter modules with smaller pore size and the larger floc size were required for long term operation safely.

Improvement of the Thickening Characteristics of Activated Sludge by Electroflotation (EF) (전해부상을 이용한 활성슬러지의 농축효율 향상)

  • Choi, Young Gyun;Chung, Tai Hak;Yeom, Ick Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.295-300
    • /
    • 2005
  • The performances of electroflotation (EF) on the thickening of activated sludge were investigated using laboratory scale batch flotation reactors. Four activated sludges including bulking sludges were tested. After 30minutes of EF operation, 57-84 % of sludge volume reduction could be achieved by EF, while only about 1.5-14% could be obtained by gravity thickening for the same period. After thickening the effluent water quality in terms of TCOD, SS, and turbidity was improved by EF operation for all sludge samples. It is induced that the air bubbles entrapped in the thickened sludge play a key role in the observed improvement of sludge thickening and effluent quality.

Influence of sludge solids content on sludge dewaterability using bioleaching

  • Wong, Jonathan W.C.;Zhou, Jun;Zhou, Lixiang;Kurade, Mayur B.;Selvam, Ammaiyappan
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.199-206
    • /
    • 2014
  • Dewatering is an extremely important step in wastewater treatment process to reduce the final sludge volume in order to minimize the cost of sludge transportation and disposal. In the present study, the effect of different sludge solids content (1, 2 and 3.8%) on the dewaterability of anaerobically digested sludge using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was studied. The pH reduction rate was higher during initial process in the sludge having low solids content, but after 48 h of bioleaching, similar pH of below 3 was observed with all the different solids content. Bio-oxidation rate of $Fe^{2+}$ was initially higher in sludge with low solids content, but 100% $Fe^{2+}$ was oxidized within 60 h in all the three treatment levels. Compared to the control, specific resistance to filtration was reduced by 75, 78 and 80% in the sludge with a solids content of 1, 2 and 3.8% respectively, showing improvement in dewaterability with an increase in sludge solids content. Sludge effluent quality and sludge settling rate were also improved in treatments with higher solids content after the bioleaching process.

Improvement of Activated Sludge Dewaterability by Electro-flotation (전해부상을 이용한 활성슬러지의 탈수성 향상)

  • Choi, Young-Gyun;Park, Byung-Ju;Park, Min-Jung;Kim, Yun-Jung;Chung, Tai-Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.677-684
    • /
    • 2006
  • Electro-flotation(EF), a novel sludge thickening method, could improve the dewaterability of activated sludge. The gas(microbubbles) generated during EF decreased the solid-liquid separation time below 1/5 of the time required for gravity sedimentation. In addition, over 90% of the sludge volume reduction could be achieved by EF although the settling characteristics of the sludge was very poor. The SRF(specific resistance to filtration) of the thickened sludge by EF was much lower than that of the sludge thickened by gravity sedimentation. The SRF of the thickened sludge decreased exponentially with increase of gas generation rate of the EF system. Gas generation rate could be controlled by varying the current density of the electrode. Degasing of the microbubbles by vigorous mixing of the thickened sludge layer deteriorated the dewaterability of the sludge. Therefore, it is obvious that the gas bubbles entrapped in the thickened sludge play a key role in the observed dewaterability improvement.