• Title/Summary/Keyword: Sludge Thickening

Search Result 49, Processing Time 0.03 seconds

Sewage Sludge Thickening Using Electroflotation (전기부상을 이용한 하수슬러지 농축)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1085-1090
    • /
    • 2007
  • The performance of EF (electroflotation) on the thickening of activated sludge were investigated using laboratory scale batch flotation reactor. In this paper, the effects of parameters such as electrode material, NaCl dosage, initial sludge concentration and electrode distance were examined. The results showed that the performance for sludge thickening of the five electrodes lay in: Pt/Ti > Ru/Ti > Ir/Ti > Ti mesh > Ti plate. The more NaCl dosage was high, the more sludge was thickened and the shorter thickening time was obtained. However, considering the final thickening time and sludge concentration, optimum NaCl dosage was 0.5 g/L. Thickening time and sludge concentration was not affected by electrode distance. In DAF (dissolved air flotation) system, optimum recycle ratio was 40% and thickening performance was lower than that of the EF.

Sludge Thickening using Electro-Flotation in Water Treatment Plant (전해부상에 의한 상수 슬러지 농축효율)

  • Lee, Jun;Han, Mooyoung;Dockko, Seok;Park, Yonghyo;Kim, Tschungil;Kim, Mikyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • Gravity thickening process has been widely used in WTP sludge thickening at domestic water treatment plant. The operation method of the process is very simple, however, the process requires long detention time about 24~48 hours for sludge thickening, uses polymer, and low total solids of thickened sludge to increase sludge thickening efficiency. To solve there problems, we studied about flotation process, especially, electro-flotation (EF) process in WTP sludge thickening. Electro-flotation process is simpler than dissolved-air-flotation(DAF) process because EF needs only electrode and current to generate micro-bubbles and the operation is easy. This study was performed at two batch columns to compare interface height, total solids, effluent turbidity between an electro-flotation thickening and a gravity thickening. According to the result, an electro-flotation thickening was that interface height was decreasing, total solids had high concentration, and effluent turbidity was low in comparison with a gravity thickening. Also, it will make the high efficiency of following process, such as a dehydrating process and digestive process. because of high total solids and low moisture content in the sludge.

Effect of Sludge Characteristics on the Thickening of Bulking Sludge using DAF (Dissolved Air Flotation) (슬러지의 성상이 DAF(Dissolved Air Flotation)를 이용한 팽화 슬러지 농축에 미치는 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.97-103
    • /
    • 2006
  • Excess sludge treatment and disposal currently represent a rising challenge for domestic or wastewater treatment plants due to economic, environmental and regulation factors. Conventional gravity sedimentation process has been widely used in sludge thickening. The operation method of the process is very simple, but the process requires long detention time for sludge thickening, uses polymers, and shows low sludge thickening efficiency. To solve the problems, we studied on DAF (Dissolved Air Flotation) system. We use bulking sludge of a paper manufacturing plant. The effects of parameters such as SVI (Sludge Volume Index), storage time, initial concentration and wet density of excess sludge were examined. The results showed that the more SVI was low, the more sludge was thickened. As storage time goes by, SVI was increased and thickening performance was deteriorated. In order to improve flotation performance at high concentration, high recycling ratio and pressure did not increase the concentration due to thickening limitation. The addition of 0.8 g/L of loess was increased flotation efficiency of 1.41 times.

Improvement of the Thickening Characteristics of Activated Sludge by Electroflotation (EF) (전해부상을 이용한 활성슬러지의 농축효율 향상)

  • Choi, Young Gyun;Chung, Tai Hak;Yeom, Ick Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.295-300
    • /
    • 2005
  • The performances of electroflotation (EF) on the thickening of activated sludge were investigated using laboratory scale batch flotation reactors. Four activated sludges including bulking sludges were tested. After 30minutes of EF operation, 57-84 % of sludge volume reduction could be achieved by EF, while only about 1.5-14% could be obtained by gravity thickening for the same period. After thickening the effluent water quality in terms of TCOD, SS, and turbidity was improved by EF operation for all sludge samples. It is induced that the air bubbles entrapped in the thickened sludge play a key role in the observed improvement of sludge thickening and effluent quality.

Thickening of Excess Sludge using Mesh Filter (메쉬 여과모듈을 이용한 잉여슬러지 농축)

  • Jung, Yong-Jun;Kiso, Yoshiaki;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.346-351
    • /
    • 2004
  • Because of being produced a great deal of excess sludges from biological wastewater treatment process, the subject regarding treatment and disposal of them has been significantly handled in real plants. It should be considered the alternative treatment with easy operating and cost effective process in rural areas. For the thickening of wasted activated sludge from small scale wastewater treatment facilities, thus, the provisional sludge thickening system was developed by the application of mesh filter module. Three meshes with different pore size(100, 150, $200{\mu}m$) were prepared for filter modules that were used to withdraw effluent from thickening system. A filter module with $100{\mu}m$ mesh was chosen as the most effective thickening material in the viewpoint of volume reduction and effluent quality: the volume reductions of initially injected sludge with 3,600 mg/L and 9,100 mg/L were 95% and 85%, respectively, and the filtered effluents were enough good to be shown below 1.0 mg/L of SS and 1.0 NTU of turbidity. Since the filtration of thickening was influenced by the cake layer formed on mesh filter module and this system was operated in the combination of sludge thickening with gravity settling, the filter modules with smaller pore size and the larger floc size were required for long term operation safely.

Effect of Ozone Injection on Dewaterability and Thickening of Sewage Sludge (하수 슬러지 농축 및 탈수성에 미치는 오존의 영향)

  • Hwang, Kyeoung-Sa;Kim, Moon-Ho;Bae, Yoon-Sun;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.800-808
    • /
    • 2005
  • It is required to propose an alternatives for appropriate sludge treatment owing to persistent construction of sewage treatment plant and increase of sewage sludge quantity. In order to treat sludge more efficiently, the methods which reduce the cost of sludge treatment have been studied such as sludge reduction and conditioning. Especially ozone treatment reduces solid quantity and improves separation of solid-liquid at the same time. Therefore ozone treatment have a positive effect on reduction and stabilization of sludge. So, this study applied ozone to sewage sludge and induced cell destruction of sludge. By comparing with the correlation between thickening and dewatering, and evaluating moisture content and solubilization of cake, this study verificates the effect of process improvement for ozone pre-treatment. In J-STP case, according to ozone dose solid flux increased about 12 times from $1kg/m^2{\cdot}h$ to $12kg/m^2{\cdot}h$. Also this plant were capable to shorten thickening time from 40 minutes to 6~7 minutes. Thus it is expected to reduce volume and retention time of thickener. On pH effect factor, dewatering at pH4 was more than at pH11, $3.05{\times}10^{11}$ and $3.82{\times}10^{11}(m/kg)$. But effect of pH was analogous to ozone, $2.81{\times}10^{11}(m/kg)$. The effect of pH on thickening was similar to law sludge, $0.68(kg/m^2{\cdot}h)$, and the effect of ozone injection on thickening was the biggest, $3.45(kg/m^2{\cdot}h)$. The COD solubilization rate improved from about 5 to 30%. So it is judged that we are able to utilize most solubilized sludge to another sewage treatment plants.

Cause of Break-up and Flotation Characteristics for Sludge from DAF Process (DAF 공정에서 발생한 슬러지의 Break-up 원인과 부상 특성)

  • Yoo, Young-Hoon;Moon, Yong-Taik;Kim, Seong-Jin;Lee, Kwang-Joon;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.527-536
    • /
    • 2010
  • Although the bubble-floc agglomerate floated and formed the float layer on the surface of the water in the DAF process, after inducing in the thickening tank a part of the bubble-floc agglomerate come up again to the surface and the other is settled at the bottom of the tank. The bubble-floc agglomerate divided into two group as the scum on the surface and the sludge of the bottom gives rise to operational troubles for the thickening process. In order to find out the cause of break-up and the effective thickening method for sludge from the DAF process, the composition of the bubble-floc agglomerate was investigated and a series of flotation experiments carried out. There was no difference of composition between the scum on the surface and the sludge of the bottom in the thickening tank. The coagulation was not effective to improve the trouble that the bubble-floc agglomerate divided into the scum and the sludge. It was estimated that for the bubble-floc agglomerate of thickening tank the trouble was caused by not the change or the difference of chemical composition but whether the bubble-floc agglomerate hold bubbles. Furthermore, for the effective thickening of sludge from the DAF process, it is required an additional flotation applied the AS ratio depending upon the solid concentration of sludge as the operation parameter.

Thickening Characteristics of Activated Sludge by Air Flotation Process (공기부상법을 이용한 활성슬러지의 부상분리 특성)

  • Park, Chanhyuk;Hong, Seok-won;Maeng, Juwon;Lee, Sanghyup;Choi, Yong-su;Moon, Seong-yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.747-753
    • /
    • 2006
  • Air flotation is a solid-liquid separation process that utilizes up-flow microbubbles to thicken activated sludge and enhance clarification efficiency. Continuous air flotation experiments were performed to investigate the effect of operation parameters such as initial MLSS (mixed liquor suspended solid) concentration, air pressure, surface loading rate, air to solid (A/S) ratio, and flotation time on thickening efficiency. An initial activated sludge concentration ranged from 3,000 to 12,000mgSS/L and thickened sludge concentration varied from 6,400 to 28,100mgSS/L. The result showed that the thickening efficiency was mainly dependent on surface loading rate, A/S ratio, and flotation time. The pressure did not affect the thickening efficiency when it kept in the range of 1.6 to 1.8 bar. Experimental results showed that the thickening efficiency of activated sludge was increased only when the feed sludge concentration exceeded 5,000mgSS/L and the thickened concentration was over 20,000mgSS/L. At this time, SS concentration in the clarified liquid was ranged from 5 to 10mg/L.

Effect of Coagulation and Homogenization on the Dissolved Air Flotation and Sedimentation of Bulking Sludge (응집과 균질화가 팽화슬러지의 용존공기부상과 침전에 미치는 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.1 s.94
    • /
    • pp.68-74
    • /
    • 2007
  • The objective of this study is to examine the effect of the coagulation and homogenization in bulking sludge thickening of paper manufacturing plant using DAF(Dissolved Air Flotation) and gravitational sedimentation. The effects of parameters such as dosage of coagulant and homogenization time were examined. The results showed that DAF and sedimentation was affected aluminum sulfate and anion polymer coagulant differently. At the optimum dosage of aluminum sulfate, thickening efficiency of DAF and sedimentation process were increase 1.25 time and 2.02 time, respectively. At the optimum dosage of anion polymer coagulant, thickening efficiency of DAF process was increase 1.35 time, but thickening efficiency at sedimentation was 1.06 time. When anion polymer coagulant of 0.5 mg/l was added in DAF process, water content of sludge was decreased from 96.6% to 90.7% in dewatering process using Buchner funnel test device. After homogenization(20500 rpm, 10 min), Sauter mean diameter of sludge floc was decreased from 631 ${\mu}m$ to 427 ${\mu}m$, however increase of flotation efficiency by DAF was only 1.09 time.

Effects of Sludge SVI and Chemical Conditioning on Activated Sludge Flotation Thickening (슬러지 SVI와 화학적 개량이 슬러지부상농축에 미치는 영향)

  • Lee, Ki Yong;Kim, Shin Jo;Kwon, Oh Sang;Yeom, Ick Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.349-355
    • /
    • 2010
  • Electroflotation (EF) was conducted for activated sludge thickening to investigate the effects of sludge SVI (sludge volume index) and chemical conditioning. Return sludge samples were used for the experiment, which were collected from municipal wastewater treatment plants. The performance of sludge thickening was significantly dependent on sludge SVI. For the sludges with SVI values in a range from 50 to about 150 mL/g, the maximum float content decreased rapidly from 8.4 to 3.5% and flotation compressibility followed the same pattern. In cases of sludges with SVI higher than 150 mL/g, those results showed low content levels without large changes. Gas/solids ratio tended to increase with an increase in SVI. When polyelectrolyte was added into sludges for the conditioning, compressibility increased up to 75% and gas/solids ratio was reduced up to about 35% under the condition of microbubble production rate of 530 mL/h, however, there was no consistent effect of chemical conditioning on the maximum float solids content; some cases were positive but the others negative. It was expected that the optimum dose of electrolyte depends on sludge SVI and an excessive chemical dose causes a performance deterioration of flotation thickening.