• Title/Summary/Keyword: Sludge Settling

Search Result 110, Processing Time 0.021 seconds

Formation and Characteristics of Aerobic Granular Sludge Using Polymer in Sequencing Batch Reactor (연속회분식 장치에서 응집제를 이용한 호기성 입상슬러지 생성 및 특성)

  • Lee, Bong-Seob;Choi, Seong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1143-1150
    • /
    • 2009
  • This study was carried out to investigate of aerobic granulation by using sequencing batch reactor(SBR). To make aerobic granular sludge in short period of time, we used polymer. In case of SBR, we have studied on physicochemical characteristics of particle size, settling velocity, surface charge, and specific oxygen utilization rate(SOUR) depending on aerobic particle's formation. The results of running SBR with $5.4kg{\cdot}COD/m^3{\cdot}d$ of COD loading rate and 20 days reaction time showed that aerobic particle size, settling velocity, SOUR, surface charge, polysaccharide/protein(PS/PN) ratio were 2.6 mm, 1.7 cm/s, $346mg{\cdot}O_2/g{\cdot}MLVSS{\cdot}hr,\;(-)0.26{\cdot}meq/g{\cdot}MLVSS$, and 2.06 mg/mg respectively.

Development of SV30 Detection Algorithm and Turbidity Assumption Model using Image Analysis Method (이미지 분석기법을 이용한 SV30 자동감지방법 및 탁도 추정 모델 개발)

  • Choi, Soo-Jung;Kim, Ye-Jin;Yoom, Hoon-Sik;Cha, Jae-Hwan;Choi, Jae-Hoon;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.168-174
    • /
    • 2008
  • Diagnosis on setteability based on human operator's experimental knowledge, which could be established by long term operation, is a limit factor to construction of automation control system in wastewater treatment plant. On-line SVI(Sludge Volume Index) analyzer was developed which can measure SV30 automatically by image capture and image analysis method. In this paper, information got by settling process was studied using On-line SVI analyzer for better operation & management of WWTPs. First, SV30 detection algorithm was developed using image capture and image analysis for settling test and it showed that automatic detection is feasible even if deflocculation and bulking was occurred. Second, turbidity assessment model was developed using image analysis.

Removal of Nutrients from Domestic Wastewater Using Intermittently Aerated Activated Sludge Systems Supplemented with Fermented Settled Sludge (발효된 1차 침전슬러지를 공급하여 간헐폭기조를 이용한 도시하수의 영양염류 처리)

  • Weon, Seung-Yeon;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.18-23
    • /
    • 2004
  • In this research, a 2-stage intermittently aerated activated sludge system(IA) and intermittently aerated dynamic flow activated sludge system(DF) were investigated for the removal of nutrients in domestic wastewater. Wastewater was characterized by low C/N( organics/nitrogen) ratio. $COD_{cr}$, $BOD_s$, TKN and TP concentrations of domestic wastewater were 235, 47, 32 and 5.4 mg/L, respectively. Three sets of IA and one set of DF were operated. Three of four systems were added with fermented settled sludge taken from primary settling tank as an external electron donor and the other(IA) for control reactor was operated without addition of electron donor. All systems were operated at same sludge retention time of 20 days and hydraulic retention time of 12hrs. The supplemental electron donor was supplied into the anoxic mode. A higher denitrification rate was observed from the reactors with fermented settled sludge as an electron donor for denitrification compared to that of without addition of organic source. The result of this study indicates that the settled primary sludge, if the fermented at the acid stage, was an excellent electron donor for denitrification. 81 % of TN and 80% of TP were removed from the systems with the supplemental organic source added. However, the control reactor without addition of electron donor showed only 39% of TN and 43% of TP.

Microbial and Physicochemical Monitoring of Granular Sludge During Start-up of Thermophilic UASB Reactor

  • Ahn, Yeong-Hee;Park, Sung-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.378-384
    • /
    • 2003
  • Mesophilically-grown granular sludge seeded in thermophilic UASB reactor was monitored to better understand the start-up process of the reactor. The reactor was fed with a synthetic wastewater containing glucose. As COD loading rate increased stepwise, methane production rate increased. Maximum values of COD removal efficiency (95%) and methane production rate (5.3 l/day) were achieved by approximately day-80 and remained constant afterward. However, physicochemical and microbial properties of granules kept changing even after day-80. Specific methanogenic activity (SMA) was initially negligible, and increased continuously until day-153 and remained constant afterward, showing the maximum value of $1.51{\pm}0.13\;g\;CH_4-COD/g$ VSS/day. Deteriorated settling ability of granules recovered the initial value by day-98 and was maintained afterward, as determined by sludge volume index. Initially reduced granule size increased until day-126, reaching a plateau of 1.1 mm. Combined use of fluorescence in situ hybridization and confocal laser scanning microscopy (CLSM) allowed to localize families of Methanosaetaceae and Merhanosarcinaceae in granules with time Quantitative analyses of CLSM images of granule sections showed abundance patterns of the methanogens and numerical dominance of Methanosaeta spp. throughout the start-up period. The trend of SMA agreed well with abundance patterns of the methanogens.

Process variations in SBR and BS-SBR treatment (SBR 및 BS-SBR 처리의 공정변화 연구)

  • 양형재;정윤철;신응배
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.1
    • /
    • pp.59-68
    • /
    • 1997
  • The main purpose of this study was to determine effects of BS-SBR compared with SBR on the removal of soluble organics and sludge separation. In the BS-SBR process, soluble organics were removed by suspended activated sludge as well as biological fixed films and these two processes occurred simultaneously in one tank. The removal efficiency of soluble COD in the BS-SBR, approximately 97% in both 1 and 3-cycle/d was higher than for SBR. The BS-SBR process was very efficient for SS removal. The averaged SS concentration were 4.8 mg/l over the operation period, the daily SS values were consistently below 10 mg/l in both of 1-cycle and 3-cycle a day. The sludge settling characteristics in BS-SBR were totally different from SBR's. The sludge, dark brown, was well flocculated and its floc size was visible larger than the SBR's.

  • PDF

Chemical Precipitation Treatment for the Disperse Dyes Removal (분산성 염료의 제거를 위한 응집처리)

  • 한명호;박종득;허만우
    • Textile Coloration and Finishing
    • /
    • v.14 no.2
    • /
    • pp.40-50
    • /
    • 2002
  • In order to remove the pollutants effectively in the dye wastewater by chemical precipitation process, coagulation arid flocculation test were carried out using several coagulants on various reaction conditions. It was found that the Ferrous sulfate was the most effective coagulant for the removal of disperse dye(B79), and we could get the best result lot the removal of disperse dye(B56) in the aspects of TOC removal efficiency and sludge field. When the Ferrous sulfate dosage was $800mg/\ell$, the sludge settling velocity was very fast>, and the color was effectively removed in the disperse dye(B79) solution. Although the color removal was ineffective when the Alum was used as a coagulant, the sludge field was decreased in comparison with the Ferrous sulfate or the Ferric sulfate was used in the disperse dye(B56) solution. The general color removal effect for the disperse dye(B56 and B79) solutions, the Ferric sulfate was more proper coagulant than the Alum. It was showed that TOC removal was improved 5% and over by the addition of Calcium hydroxide, and $30mg/\ell$ of sludge yield was decreased(B79). When Alum or Ferric sulfate was used as a coagulant, pH condition for most effective color removal was 5 in B56 solution. In case of Ferrous sulfate as a coagulant, most effective pH condition for color removal was 9. When Ferric sulfate or Ferrous sulfate was used as a coagulant, pH condition for most effective color removal was 9 in B79 solution.

Estimation of Alkali Overdosing in a Lime Neutralization Process for Acid Mine Drainage

  • Cheong, Young-Wook;Cho, Dong-Wan;Lee, Jin-Soo;Hur, Won
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.109-112
    • /
    • 2022
  • Lime has been used for the neutralization of acidic waste because it is cheap and available in large quantities. The resulting sludge often contains a considerable amount of unreacted lime due to alkali overdosing, even during automatic neutralization processes, which mainly arises from the poor solubility of lime. The sludge cake from lime neutralization of Ilkwang Mine also contained high percentages of calcium and magnesium. The elemental content of the sludge cake was compared with those obtained from a simulation of the lime neutralization facility installed at Ilkwang Mine. A Goldsim® model estimated the degree of lime overdosing to be 19.1% based on the fractions of ferrous oxide. The analysis suggests that resolubilization of aluminum hydroxide could occur in the settling basin, in which pH exceeded 10 due to the continued dissolution of the overdosed lime. The present study demonstrated that chemical analysis of sludge combined with process simulation could provide a reasonable estimate of mass balance and chemistry in a neutralization facility for acid mine drainage.

Shape and Formation of Aerobic Granulation in SBR (SBR에서 호기성 입상슬러지의 형성)

  • Yun, Zuwhan;Jang, Heeran;Han, Jonghun;Han, Hyejung
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.534-538
    • /
    • 2004
  • Granulation characteristics have been studied with an aerobic sequencing batch reactor(SBR). Organic loading of 2.46kg COD/$m^3$/day followed by 4.14kg COD/$m^3$/day had been applied to the lab-scale SBR with a very short settling time during the operating cycle. The granulation proceeded to the diameter range of 3 to 5 mm with MLSS concentration of 12,000mg/L at 45th days of operation while COD removal efficiency remained almost consistent after the granule formation. It has been noticed that aerobic granulation under the higher loading with a very short settling time seemed to be due to the microbial selection of better flocculating species.

The Aeration to Improve Manganese and Chloroform of Effluent at Sludge Thickener of the Conventional Water Treatment Plant (정수장 슬러지 폭기가 방류수 망간 및 클로로포름에 미치는 영향)

  • Choi, Ilgyung;Beak, Inho;Jeong, Chanwoo;Lee, Sungjin;Park, Jungwook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.113-118
    • /
    • 2014
  • So many nationwide drinking water treatment plants are under much difficulties by new reinforced discharged effluent standards. Generally, the sludge at thickener should be retended for a long time during usual days. Sometime, the soluble manganese and chloroform may be formed under the anaerobic condition in the sludge thickener when the sludge retention time is longer with low turbidity. This phenomenon results in difficulties to keep regulatory level of the discharged effluent. It was necessary to improve the operation conditions and process itself in order to meet water quality standard recently reinforced. For an effort to overcome the problems, a sludge aeration was successfully implemented into the thickening process. Sludge aeration prevent particle oxidated Manganese eluting soluble de-oxidated Manganese, excrete formated Chloroform from effluent to air, and improve sludge settling through homogenized sludge particle. We aerated sludge at the conventional water treatment plant, measured Manganese and Chloroform of clarified water at upper sludge, and solid-fluid interface height of sludge in mass cylinder. As a result, contaminant's concentrations of the final effluent was much decreased : 41% of manganese, approximately 62% of chloroform and 35% of sludge volume, compared with non-aeration sludge.

Intracellular Concentrations of NAD(P), NAD(P)H, and ATP in a Simulated Oxic-settling-anaerobic (OSA) Process (OSA 공정의 세포 내 ATP, NAD(H), NADP(H) 농도)

  • Ventura, Jey-R Sabado;Nam, Ji-Hyun;Yang, Benqin;Na, Ri;Kil, Hyejin;Nam, Deok-Hyeon;Kang, Ki-Hoon;Jahng, Deokjin
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.599-609
    • /
    • 2015
  • In order to investigate why OSA (oxic-settling-anaerobic) process produces less sludge than CAS (conventional activated sludge) process, sequential cultivation through 1st aerobic-anaerobic-2nd aerobic conditions, were carried out. Then, the intracellular concentrations of adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD and NADH), and nicotinamide adenine dinucleotide phosphate (NADP and NADPH) were monitored for these three stages. Results showed that the concentrations of these energy substances rapidly decreased through time in both aerobic and anaerobic conditions but the anaerobic culture contained the lower energy level than aerobic culture. The 2nd aerobic culture that experienced anaerobic condition showed lower concentration of these energy substances than those of the 1st aerobic culture. Meanwhile, the anaerobic culture corresponding to the sludge holding stage of OSA was subjected to different soluble chemical oxygen demand (SCOD) levels, detention time, and temperature to evaluate the effects of these variations on the energy level difference between the 1st and 2nd aerobic stages. The lower the SCOD concentration, the longer detention time; and the higher temperature in the anaerobic stage tended to further reduce the intracellular level of the 2nd aerobic culture. On the average, the intracellular energy level of the anaerobic and 2nd aerobic stage were 57.73% and 39.12% of the 1st aerobic culture, respectively. These indicated that the insertion of an anaerobic stage between two aerobic stages could lower the intracellular energy levels, hence the lower the sludge in OSA than CAS process. Moreover, manipulation of the operating conditions of the intervening anaerobic stage can change intracellular energy levels thereby controlling sludge production.