• Title/Summary/Keyword: Sludge Recycling

Search Result 515, Processing Time 0.024 seconds

Utilization of Ready-mixed Concrete Recycling Water Mixed with Hot-rolled Slag Containing C12A7 and Application Characteristics of Cement Mortar (C12A7을 함유한 열연슬래그를 혼입한 레미콘 회수수 활용 및 시멘트 모르타르의 적용 특성)

  • Kim, Young-Yeop;Lee, Han-Seung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.92-99
    • /
    • 2021
  • CaO-based by-products composed of CaO, SO3, Al2O3, etc. are generally used as raw materials for CaO compounds. When applied to the recovered water of ready-mixed concrete, the hydration reaction of the powder material is accelerated and concrete performance can be improved. In this study, activated sludge was prepared to apply to the recovered water of ready-mixed concrete by mixing CaO-based hot-rolled slag(C12A7) in the recycling water of ready-m ixed concrete. Cem ent paste setting time and mortar compressive strength performance tests confirmed the effect on the hydration reaction. Therefore, the possibility of concrete application using activated sludge was confirmed.

Characteristics of Concrete Using Ready-Mixed Concrete Recycled Water Mixed with Industrial By-Product Desulfurization Gypsum (산업부산물 탈황석고 혼입 레디믹스트콘크리트 회수수를 이용한 콘크리트의 특성)

  • Kim, Young-Yeop;Lee, Han-Seung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.395-403
    • /
    • 2020
  • CaO-based by-product, which consist of CaO, SO3, Al2O3 and so on, has being used to raw materials of CaO compound. When It was applied to recycling water of remicon, concrete performance can be enhanced because hydration reaction of powder material is accelerated. In this study, activated-sludge, which was putted desulfurization gypsum of CaO-based in recycling water, was manufactured to verify effect of them, and then they was investigated by characteristics of redy-mixde concrete. As a result of concrete tests, it was confirmed that there is no problem of strength or drying shrinkage while ensuring workability. Therefore, the possibility of specific application using activated sludge was confirmed.

Current Status on the Domestic Recycling of Magnesium (국내(國內) 마그네슘 리싸이클링 현황(現況))

  • Park, Hyung-Kyu;Kang, Min-Cheol
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.3-11
    • /
    • 2011
  • Magnesium has been used as parts of vehicles, case materials of notebook PC and mobile phone, and its demand has been increasing recently. So until now, there has little magnesium scraps from the end of life vehicles or electronic parts, and most scraps has been generated from magnesium processing lines such as melting, die casting and machining. It is to review the present status of magnesium recycling. Here, domestic demand of magnesium, recycling amount and technologies used in domestic recycling companies were surveyed in recent years. In 2010, 8,840 tons of magnesium scraps were processed and used as raw materials for die casting products. The recycling ratio was estimated as 32.5%.

Unconfined compressive strength and freeze-thaw resistance of sand modified with sludge ash and polypropylene fiber

  • Gullu, Hamza;Fedakar, Halil I.
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.25-41
    • /
    • 2017
  • In recent years, the amount of sludge ash (SA) has considerably increased due to rapid urbanization and population growth. In addition, its storage in landfills induces environmental pollution and health problems. Therefore, its disposal in an environmentally friendly way has become more important. The main goal of this study is to investigate the reusability of sludge ash as an additive with polypropylene fiber (PF) to stabilize marginal sand based on the compressive strength performances from UCS tests. For this purpose, a series of UCS tests was conducted. Throughout the experimental study, the used inclusion rates were 10, 15, 20 and 30% for sludge ash and 0, 0.5 and 1% for polypropylene fiber by total dry weight of the sand+sludge ash mixture and the prepared samples were cured for 7 and 14 days prior to the testing. Freezing and thawing resistance of the mixture including 10% sludge ash and 0, 0.5 and 1% polypropylene fiber was also examined. On the basis of UCS testing results, it is said that sludge ash inclusion remarkably enhances UCS performance of sand. Moreover, the addition of polypropylene fiber to the admixtures including sand and sludge ash significantly improves their stress-strain characteristics and post-peak strength loss as well as UCS. As a result of this paper, it is suggested that sludge ash be successfully reused with polypropylene fiber for stabilizing sand in soil stabilization applications. It is also believed that the findings of this study will contribute to some environmental concerns such as the disposal problem of sludge ash, recycling, sustainability, environmental pollution, etc. as well as the cost of an engineering project.

A Study on Heat Transfer Characteristics according to Thermal Hydrolysis Reaction of Poultry Slaughter Waste (도계폐기물의 열가수분해 반응에 따른 열전달 특성 연구)

  • Song, Hyoung Woon;Jung, Hee Suk;Kim, Choong Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.95-103
    • /
    • 2015
  • The purpose of this study was performed to quantitatively measure the thermal conductivity of poultry slaughter waste with variation of reaction temperature for optimal design of thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dehydrated sludge related to the reaction temperature. As the reaction temperature increased, the dehydrated sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bond water in the sludge cells comes out as free water, which changes the dehydrated sludge from a solid phase to slurry of a liquid phase. As a result, the thermal conductivity of the its sludge was more than 2.11 times lower than that of the water at $20^{\circ}C$. However, the thermal conductivity of the sludge approached to $0.677W/m{\cdot}^{\circ}C$ of water at $200^{\circ}C$, experimentally substantiating liquefaction of the dehydrated sludge. Therefore, we confirmed that the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. And the thermal conductivity function related to reaction temperature was derived to give the boundary condition for the optimal design of the thermal hydrolysis reactor. The consistency of the calculated function was 99.69%.

A Study on the Pyrolysis Processing for sludge disposal in sewage treatment plant (하수처리장내 슬러지 처리를 위한 열분해공정에 관한 연구)

  • Ha, Sang-An;Kim, Hyeoog-Seok;Sung, Nak-Chang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.4
    • /
    • pp.65-74
    • /
    • 2002
  • This Study was investigated operating condition of pyrolysis processing for sludge disposal in sewage treatment plant. Important parameters studied include running time of pyrolysis, run time of dry and pyrolysis processing, water content of sewage sludge, solids amount of sewage sludge(TS%), condition of pyrolysis temperature. Most degradation reaction of sewage sludge are first order, it assumed first order and elucidated the kinetics. This was the basis of characteristics analysis of sludge degradation mechanism. Also, with the increasing of temperature, how the yield of oil and char product change was observed, and the distribution of gas product components was observed. Main components of gas and carbon product are a little difference with pyrolysis temperature, but it consist of $CH_4$, $C_2H_4$, $C_3H_8$, $C_4H_{10}$, toluene, $C_6H_6$, $SO_2$, CO etc. The gas of $C_1-C_4$ yield increased along with degradation temperature of $670^{\circ}C$ and oil yield decreased of $C_6H_6$ and $C_6H_5OH$ with temperature of $600^{\circ}C$. Particularly, low value added char yield 134kg/t at $670^{\circ}C$, but increased to 194kg/t at pyrolysis temperature of $600^{\circ}C$. In the result of elementary analysis on it, it is mainly composed of carbon. From this fact, in pyrolysis of sludge, it comfirmed that carbonization reaction occur at high temperature well.

  • PDF

Investigation on management conditions for vermicomposting of night soil in Field at N Sewage Water plant (N하수처리장 정화조.분뇨케익의 재활용을 위한 지렁이 사육 조건검토)

  • Kim, K.Y.;Lee, C.B.;Choi, H.G.;Phae, C.G.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.102-113
    • /
    • 2000
  • This study was conducted to investigate the expandibility of sludge treatment by earthworm through real scale experiment and the optimum counter-plan for organic sludge treatment. For the purposes, sludge removal efficienciesof night-soil using earthworm and it's behavior according to the transplanting methods of the earthworm on non-cover worm bed or in the green house worm bed were compared. Sludge uptake rates on non-cover worm bed for 6 months were $0.27{\sim}0.33ton/m^2$ and the excrement of earthworm yields $0.15ton/m^2$(44.1~46.7% of raw night soil sludge dosage). These results were not much different from the worm bed in the green house. The average and maximum earthworm density were about $6.5kg/m^2$ and $7kg/m^2$ respectively on the non-cover worm bed. The density of the worm bed was comparatively higher in spring and fall terms but lower in summer. The amount of old earthworm was much plenty than young earthworm on the non-cover worm bed, resulting in reverse distribution type of pyramid. From the experiments on non-cover worm bed(7,000 pyeong)and in the green house worm bed(1,200 pyeong), it was concluded that landfill and transporting cost could be reduced when the earthworm was applied for the night-soil sludge treatment. Profits from the excrement sale of earthworm was 9,600,000 won. Through this study, it was founded that earthworm treatment method for organic sludge are much more environmentally sound than landfill treatment.

  • PDF

Feeding rate, excreting rate and biomass increasing rate of earthworm (Eisenia fetida) fed with paper mill sludge and cow dung manure (제지슬러지 및 우분 급이시 줄지렁이(Eisenia fetida)의 섭식률, 배설률 및 증체율)

  • Bae, Yoon-Hwan;Park, Kwang-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.101-109
    • /
    • 2006
  • Earthworms(Eisenia fetida) were fed with paper mill sludge produced from P&G or Yuhan Kimberly paper manufacturing factory, or cow dung manure. Turnover rate of feed into earthworm biomass and excreting rate on each feed were investigated on dry weight base. Biomass of earthworm population was increased on paper mill sludge, but it was fallen to death on cow dung manure, which had high electrical conductivity and low redox potential. When P&G paper mill sludge was supplied to adult, elder juvenile or younger juvenile for 84 days, turnover rate of feed into earthworm biomass was 0.48, 0.40 and 0.76%, respectively, and on Yuhan Kimberly paper mill sludge 0.26, 0.45, 0.42%. When P&G paper mill sludge was supplied to adult, elder juvenile or younger juvenile, excreting rate was 49.02, 54.32 and 55.39%, respectively and on Yuhan Kimberly paper mill sludge 32.22, 41.86, 40.69%, and on cow dung manure, 73.73, 57.89. 76.38%.

  • PDF

Effects of VS concentration and mixing ratio on hydrogen fermentation of food waste and sewage sludge (음식물 쓰레기와 하수 슬러지의 생물학적 수소 발효에 미치는 VS 농도와 혼합비의 영향)

  • Kim, Sang-Hyoun;Han, Sun-Kee;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.97-104
    • /
    • 2003
  • Hydrogen fermentation of food waste and sewage sludge was performed in serum bottles under various volatile solids(VS) concentrations(0.5~5.0%) and mixing ratios of two substrates(0:100-100:0, VS basis). Full quadratic equations, optimal conditions, and 90% acceptable conditions for hydrogen production potential and rate were obtained using cumulative methane production data and response surface methodology. The specific hydrogen production potential of food waste was higher than that of sewage sludge. However, hydrogen production potential increased as sewage sludge composition increased up to 13~19% at all the VS concentrations. The maximum specific hydrogen production potential of 122.9 mL/g $carbohydrate_{added}-COD$ was found at the waste composition of 87:13(food waste:sewage sludge) and the VS concentration of 3.0%. The relationship between carbohydrate concentration, protein concentration, and hydrogen production potential indicated that enriched protein by adding sewage sludge might enhance hydrogen production potential. The maximum specific hydrogen production rate was 111.2 mL $H_2/g$ VSS/h. Food waste and sewage sludge were, therefore, considered as a suitable main substrate and a useful auxiliary substrate, respectively, for hydrogen production.

  • PDF

Pyrolysis Characteristics of Sludge Discharged from Paper Mill Process (제지공정에서 발생하는 슬러지의 열분해 특성)

  • Ko, Jae-Churl;Kim, Seung-Ho;Park, Young-Koo;Jeon, Jea-Yeoul;Kim, Jin-Ho;Park, Joon-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.80-87
    • /
    • 2009
  • This research was conducted to evaluate pyrolysis characteristics of the sludge discharged from paper mill process with sintering temperature. The sludge was composed of 70.72% of moisture, 9.52% of volatile solids, and 19.76% of ash, respectively. The sludge contained high 66.40% of $Fe_2O_3$ and CaO(15.80%), $Al_2O_3$(9.42%), and $SO_3$(3.75%) components, and minor $SiO_2$, $Na_2O$, and $Cr_2O_3$ were also contained in it. The other components except $Fe_2O_3$ and $Cr_2O_3$ were slightly decreased with increase of sintering temperature. Specific surface area of the sludge before sintering was $130m^2/g$ and ones after sintering at $400^{\circ}C$ and $700^{\circ}C$ were $114m^2/g$ and $33m^2/g$ respectively. Specific surface area of sludge was decreased with increase of sintering temperature. From the result of TG-DTA, it was shown that weight of the sludge was decreased by moisture and organic loss until $600^{\circ}C$ and decreased by volatilization of metal components and additional combustion of carbon until $800^{\circ}C$.

  • PDF