• 제목/요약/키워드: Sludge Loading rate

검색결과 166건 처리시간 0.02초

하수슬러지와 생활폐기물 혼합소각시 열부하 변화 및 대기오염물질 부하 변화를 통한 혼합소각 가능성에 관한 연구 (The Feasibility of Co-Incineration for Municipal Solid Waste and Sewage Sludge through the Change of Heat Loading and Atmospheric Pollutants Loading)

  • 조재범;김우구;연경호;신정훈
    • 대한환경공학회지
    • /
    • 제34권9호
    • /
    • pp.583-589
    • /
    • 2012
  • 하수슬러지의 처분 방안으로서 하수슬러지를 생활폐기물과 혼합소각시의 가능성을 타진하기 위해 전체폐기물 중 하수슬러지를 20%까지 혼합하여 실험한 결과, 열부하 및 대기오염물질(질소산화물, 황산화물)부하에 영향을 크게 주지 않는 것으로 나타났다. 생하수슬러지(함수율 78.8%) 및 건조하수슬러지(함수율 60%)를 혼합소각한 결과, 건조하수슬러지를 혼합한 경우에는 열부하변동이 거의 없었으나 생하수슬러지를 혼합소각한 경우는 열부하가 다소 낮아지는 것으로 나타나 전처리를 한슬러지 혼합소각이 평상시와 같은 운전조건으로 소각로 연소를 이룰 수 있을 것으로 판단되나 고발열 생활폐기물 발열에 의한 소각로 파손을 방지하기 위해서는 에너지 비용 및 슬러지 경화현상에 의한 국부소각 방지 등을 고려하여 생하수슬러지에 수분을 공급하여 소각하는 방안도 고려해 볼만 하다고 판단된다.

Media를 충전(充塡)한 간접폭기식(間接曝氣式) 침지여상(浸漬濾床)에 의한 BOD제거 특성에 관한 연구 (A Study on the BOD Removal Characteristics of Aerobic Submerged Biofilter)

  • 양상현;권영호
    • 대한토목학회논문집
    • /
    • 제14권3호
    • /
    • pp.669-678
    • /
    • 1994
  • 침지여상에 폐수를 부하하여 간접포기 강제순환 방식으로 처리하는 system에 대하여 그 유기물 제거 특성을 실험적으로 연구했다. 실험은 침지여상에 네트링(random형(型) plastic media), 입체철망(module형(型) plastic media) 및 잔자갈의 특성이 다른 세가지 media를 충전하고, pH, 수온(水溫)을 고정한 상태에서 $BOD_5$ 용적부하와 순화비를 변동하여 실시하므로서 여재(media) 종류가 $BOD_5$ 제거효율에 미치는 특성을 규명했다.

  • PDF

Microbial and Physicochemical Monitoring of Granular Sludge During Start-up of Thermophilic UASB Reactor

  • Ahn, Yeong-Hee;Park, Sung-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권3호
    • /
    • pp.378-384
    • /
    • 2003
  • Mesophilically-grown granular sludge seeded in thermophilic UASB reactor was monitored to better understand the start-up process of the reactor. The reactor was fed with a synthetic wastewater containing glucose. As COD loading rate increased stepwise, methane production rate increased. Maximum values of COD removal efficiency (95%) and methane production rate (5.3 l/day) were achieved by approximately day-80 and remained constant afterward. However, physicochemical and microbial properties of granules kept changing even after day-80. Specific methanogenic activity (SMA) was initially negligible, and increased continuously until day-153 and remained constant afterward, showing the maximum value of $1.51{\pm}0.13\;g\;CH_4-COD/g$ VSS/day. Deteriorated settling ability of granules recovered the initial value by day-98 and was maintained afterward, as determined by sludge volume index. Initially reduced granule size increased until day-126, reaching a plateau of 1.1 mm. Combined use of fluorescence in situ hybridization and confocal laser scanning microscopy (CLSM) allowed to localize families of Methanosaetaceae and Merhanosarcinaceae in granules with time Quantitative analyses of CLSM images of granule sections showed abundance patterns of the methanogens and numerical dominance of Methanosaeta spp. throughout the start-up period. The trend of SMA agreed well with abundance patterns of the methanogens.

Optimum Operation of a PVDF-type Hollow Fiber Membrane Bioreactor for Continuous Sewage Treatment

  • Shin, Choon-Hwan
    • 한국환경과학회지
    • /
    • 제19권11호
    • /
    • pp.1315-1322
    • /
    • 2010
  • A membrane bioreactor (MBR) was designed using polyvinylidene fluoride(PVDF)-type hollow fiber membrane modules with a treatment capacity of 10 ton/day. A pilot plant was installed in a sewage treatment plant and was operated with an intermittent aeration method which avoids any concentration gradient of suspended solids (SS) in the MBR. For continuous operation, the pilot plant was first tested with influent (mixed liquor suspended solid:MLSS of 1000-2000 mg/L) of aeration tanks in the sewage treatment plant. The MBR was pre-treated with washing water, 10% ethanol solution, 5% NaOCl solution and finally washing water, one after another. To demonstrate the effect of the MBR on sewage treatment, compared with conventional activated sludge processes, we investigated the relationships among permeate amount (LMH), change in operation conditions, influent MLSS level and sludge production. It was found that the optimum aeration rate and suction pressure were $0.3\;m^3$/min and 30~31 cmHg, respectively. Under stable conditions in aeration, suction pressure, influent flow rate and drainage, the SS removal efficiency was more than 99.99% even when the MLSS loading rate changes. Compared with conventional activated sludge processes, the MBR was more effective in cost reduction by 27% based on permeate amount and by 51.5% on sludge production.

암모니아 산화균 및 아나목스균의 배양을 통한 파일롯 규모 단일 아나목스 반응기의 성공적인 시운전 (Successful start-up of pilot-scale single-stage ANAMMOX reactor through cultivation of ammonia oxidizing and ANAMMOX bacteria)

  • 최대희;진양오;이철우;정진영
    • 상하수도학회지
    • /
    • 제32권5호
    • /
    • pp.371-379
    • /
    • 2018
  • The lack of seed sludges for Ammonium Oxidizing Bacteria (AOB) and slow-growing ANaerobic AMMonium OXidation (ANAMMOX) bacteria is one of the major problem for large-scale application. In this study, $24m^3$ of single-stage SBR (Sequencing Batch Reactor) was operated to remove nitrogen from reject water using AOB and ANAMMOX bacteria cultivated from activated sludge in the field. The ANAMMOX activity was found after 44 days of cultivation in the ANAMMOX cultivation reactor, and then $0.66kg\;N/m^3/d$ of the nitrogen removal rate was achieved at $0.78kg\;N/m^3/d$ of the nitrogen loading rate at 153 days of cultivation. The AOB cultivation reactor showed $0.2kg\;N/m^3/d$ of nitrite production rate at $0.4kg\;N/m^3/d$ of nitrogen loading rate after 36 days of operation. The cultivated ANAMMOX bacteria and AOB was mixed into the single-stage SBR. The feed distribution was applied to remove total nitrogen stably in the single-stage SBR. The nitrogen removal rate in the single-stage SBR was gradually enhanced with an increase of specific activities of both AOB and ANAMMOX bacteria by showing $0.49kg\;N/m^3/d$ of the nitrogen removal rate at $0.56kg\;N/m^3/d$ of the nitrogen loading rate at 54 days of operation.

무산소 활성오니공정을 이용한 판지공장 폐수처리의 동력학적 해석 및 설계분석 (Bio-kinetic and Design Analysis for Box-mill Wastewater Treatment Using Anoxic Activated Sludge Process)

  • 조용덕;이상화;김영일
    • 대한환경공학회지
    • /
    • 제28권10호
    • /
    • pp.1090-1097
    • /
    • 2006
  • 판지공장 인쇄폐수에 무산소 활성오니공정을 적용한 결과 $TCOD_{Mn}=90{\sim}94%$, $Color=58{\sim}81%$의 높은 제거효율을 얻었다. 산업현장 판지공장 폐수에 대한 무산소 활성오니공정의 설계분석을 위하여 Monod식에 의한 동력학적계수를 추정한 결과 $K_{max}$(최대 기질제거속도)=0.52 $day^{-1}$, $K_s$(반포화 기질농도)=314 mg/L, $K_d$(내생호흡계수)=0.274 $day^{-1}$, y(미생물의 합성계수)=0.908 mg/mg, ${\mu}_{max}$(최대 비생장속도)=0.472 $day^{-1}$로 산출되었다. 설계분석을 위한 부하인자의 값은 F/M비=$0.043{\sim}0.07$ kg-$TCOD_{Mn}$/kg-SS-day, BOD 용적부하=$0.18{\sim}0.3$ kg-$TCOD_{Mn}/m^3-day$, ${\theta}_x$(미생물 체류시간)=$=6.8{\sim}26.4$ day로 현장 검증되었다. 이러한 부하인자의 값을 미생물의 성장 동력학과 연계시켜 볼 때 F/M비는 ${\theta}_x$에 반비례하고, 단위측면에서 F/M비는 ${\mu}_{max}$와 같아야 하나 F/M비와 ${\mu}_{max}$는 상당한 차이가 있음을 알 수 있었다. 따라서 미생물의 성장 동력학을 이용한 무산소 활성오니공정을 설계하고자 할 때에는 충분한 안전율이 요구되는 것으로 사료되었다.

고정화 활성슬러지를 이용한 시안 분해 (Degradation of Cyanide by Activated Sludge Immobilized with Polyethylene Glycol)

  • 정경훈;최형일;김정애;문옥란;김명희
    • 한국환경과학회지
    • /
    • 제17권12호
    • /
    • pp.1343-1351
    • /
    • 2008
  • The activated sludge obtained from wastewater coke oven plant was immobilized by entrapment with polyethylene glycol (PEG). The effects of several factors on the biodegradation of $CN^-$ from. synthetic wastewater were investigated using batch and continuous reactors. The degradation rate of $CN^-$ increased with increasing of the immobilized bead volume in the reactor. Approximately 7.65mg/L of $NH_4-N$ was produced upon the degradation of 35mg/L of $CN^-$. When high concentrations of the toxic cyanide complex were used in the testing of cyanide degradation, the free activated sludge could be inhibited more than that of the immobilized activated sludge. When the phenol concentration was higher than 400mg/L in the synthetic wastewater, approximately 98.4% of $CN^-$ was removed within 42 hours by the immobilized activated sludge. However, the cyanide was not completely degraded by the tree activated sludge. This indicates that high phenol concentrations can act as a toxic factor for the free activated sludge. A $CN^-$ concentration of less than 1mg/L was achieved by the immobilized sludge at the loading rate of 0.025kg $CN^-/m^3-d$. Moreover, it was found that the HRT should be kept for 48 hours in order to obtain stable treatment conditions.

Treatment of Wastewater from Purified Terephtalic Acid (PTA) Production in a Two-stage Anaerobic Expanded Granular Sludge Bed System

  • Lee, Young-Shin;Han, Gee-Bong
    • Environmental Engineering Research
    • /
    • 제19권4호
    • /
    • pp.355-361
    • /
    • 2014
  • The wastewater treatment with a two-phase expanded granular sludge bed (EGSB) system for anaerobic degradation of acetate, benzoate, terephtalate and p-toluate from purified terephtalic acid (PTA) production was studied. The feasibility and effectiveness of the system was evaluated in terms of organic oxidation by chemical oxygen demand (COD), gas production, bacterial adaptability and stability in the granular sludge. Average removal efficiencies 93.5% and 72.7% were achieved in the EGSB reactors under volumetric loading rates of $1.0-15kg-COD/m^3/day$ and terephtalate and p-toluate of 351-526 mg/L, respectively. Gas production reached total methane production rate of 0.30 L/g-COD under these conditions in the sequential EGSB reactor system. Higher strength influent COD concentration above 4.8 g-COD/L related to field conditions was fed to observe the disturbance of the EGSB reactors.

광합성세균 미생물막반응기에 의한 유기성폐수의 처리특성

  • 오광근;이철우;전영중;이재홍
    • 한국미생물·생명공학회지
    • /
    • 제24권6호
    • /
    • pp.738-742
    • /
    • 1996
  • An efficient packed-bed type biofilm reactor charged with immobilized phototrophs was developed to treat organic wastewater at an extremely high volumetric loading rate. The packed bed reactor (PBR) charged with porous ceramic beads was superior to a fluidized-bed reactor suspended with activated carbon powders in terms of many aspects such as BOD removal efficiency, operational stability, and overall economics. For wastewater with BOD concentration as high as 20, 000mg/l, the BOD removal efficiency was maintained above 90% when the hydraulic retention time (HRT) was longer than 1 day. The allowable volumetric BOD loading rate of this reactor (20gBOD/l day) is more than ten-folds higher than that of an ordinary activated sludge method. The behaviour of the reactor was represented well by a Monod type kinetic equation with a maximum specific BOD loading rate(P) of 22.2gBOD/l day and a half saturation constant(K$_{s}$) of 1, 750 mgBOD/l.

  • PDF

공기부상 생물막 반응기를 이용한 산업폐수 처리 (Wastewater Treatment using Air-lift Biofilm Reactor)

  • 최광수;한기백
    • 한국환경과학회지
    • /
    • 제9권4호
    • /
    • pp.351-367
    • /
    • 2000
  • Air-lift biofilm reactor should be an admirable process substituting conventional activated sludge process, because of its small area requirement as well as high volumetric loading capacity and stability against loading and chemical shocks. However most of the past research on the performance of ABR was focused on the sewage treatment. This research studied the applicability of ABR to treat high strength wastewater. A bench-scale ABR was operated to treat high strength synthetic wastewater, tannery wastewater and petrochemical wastewater, and its applicability was conclusive In case of synthetic wastewater, ABR showed good performance in which the substarate removal efficiency was higher that 80% even under short HRT(1.4 hr) and high volumetric loading rate(9.3 kgCODcr/$m^3$.day). When ABR was applied to treat tannery wastewater, it was suggested that the maximum volumetric loading rate and F/M ratio should be 7.7kgCODcr/$m^3$.day, 0.76 $day^{-1}$, respectively. And high substrate removal efficiency over than 90 % was observed with 4,000 mgCODcr/L of petrochemical wastewater. Even though effluent concentration was quite high, ABR should be applicable to treat the high strength wastewater, because of its high loading capacity.

  • PDF