• Title/Summary/Keyword: Sludge Amount

Search Result 433, Processing Time 0.03 seconds

Change of Sludge-Recycle Ratio for the Bio-gas Production Improvement and Minimization with Two-Stage Anaerobic Digestion (2단 혐기성소화공정에서 반송변화를 통한 Bio-gas 생산량 증대 및 감량화)

  • Lee, Tae-Woo;Yang, Hae-Young;Do, Choong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.3
    • /
    • pp.83-86
    • /
    • 2012
  • This study have cross checked the change of internal sludge-recycle in Full-scale Anaerobic-Digestion, and researched about not only the improvement of Bio-gas production from the digested sludge but also the efficient method of sludge minimization. Ultimate aim of the study is to reduce the amount of sludge by the improved efficiency of contact with the organic-matter and the microbes in Anaerobic-Digestion. The sludge-recycle fluidized sludge layer and raised the activity of the sludge, The sludge-recycle ratio of optimum was 500%, VS and COD removal ratio respectively appeared with 67.8% and 70.4%. Through these result of this study, it may be positive view to treat waste sludge by the sludge-recycle ratio in terms of minimization and circulation of resources.

Solubilization of Sewage Sludge by Inoculation of Lactic Acid Bacteria (유산균 접종에 의한 하수 슬러지의 가용화)

  • Yang, Hyun-Sang;Lee, Jung-Eun;Lee, Eun Young
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.233-239
    • /
    • 2008
  • A new approach to the solubilization of excess activated sludge by the inoculation of lactic acid bacteria was studied to reduce the amount of sludge produced in the activated sludge treatment process. Aerobic microorganism in sludge was lysed in anaerobic condition and the cytoplasmic substance eluted was utilized as a carbon source by lactic acid bacteria. On the basis of sludge solubilization efficiency, Lactobacillus brevis and Leuconostoc mesenteroides subsp mesenteroides were selected the best candidates among five kinds of Lactobacillus sp. and seven kinds of Leuconostoc sp. The sludge solubilization efficiency by heterofermentative lactic acid bacteria was more efficient than that of homofermentative bacteria. Initial value of soluble COD (sCOD) was 1050 mg/L at the initial inoculation time increased to 3070 mg/L (192% solubilization) at 96 h of the incubation time. The inoculation of lactobacillus brevis to the sludge resulted in 2824% increase in sCOD value after 96 h of incubation than the control experiment. Leuconostoc mesenteroides subsp mesenteroides showed 152% increase of solubilization and 30% increase of S-COD/T-COD on 96 h of incubation time. Considering the increase of S-COD by the inoculation of Leuconostoc sp. on 24 h, 10% inoculation of lactic acid bacteria to the sludge was most effective.

Recycle Technology of Sewage Sludge by Carbonization Process

  • Park, Sang-Woo;Jang, Cheol-Hyeon;Kim, Nack-Joo
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.204-207
    • /
    • 2003
  • This study has been conducted for the purpose to develop a new technology using the carbonization process for establishing the resources circulation system for sewage sludge and enabling the sludge amount and volume to be reduced sanitarily and safely. Besides, it is thought that the effective value of the carbonized sludge is much greater even though there is any limitation to its applicable fields or use since it is not a product that is intentionally produced like any existing materials for conventional uses.

  • PDF

The Early-Age Strength Properties of Cement Mortar using Modified Remicon Sludge and Water (레미콘 슬러지 및 상등수를 활용한 시멘트 모르타르의 초기강도)

  • 문한영;신화철;김태욱;여병철;박창수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1248-1251
    • /
    • 2000
  • Recently, the yearly amount of remicon used in Korea is approximately one hundred million cubic meter, and it caused a by-product, remicon waste sludge. The sludge produced by washing mixers or drums of remicon trucks is restrained by the law for waste disposal because its pH is over 12, so the expense for waste disposal is needed. Until now, the waste sludge water has been recycled and used for concrete materials as sludge water which is limited to 3% of cement unit weight. However, the study on the properties of the concrete mixed with this waste sludge is so insufficient that the quality of them can be hardly trusted. Therefore, the study on that will be discussed.

  • PDF

A Study on the Solubilisation of Excess Sludge using Microbubble Ozone (잉여슬러지 가용화를 위한 마이크로버블 오존 이용에 관한 연구)

  • Lee, Shun-Hwa;Jung, Kye-Ju;Kwon, Jin-Ha;Lee, Se-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.325-332
    • /
    • 2010
  • This study was conducted with the experiment of solubilisation of excess sludge by microbubble ozone process. To improve ozone contact efficiency, microbubble ozones which its diameter were the avearge 30 ${\mu}m$, microbubble size less than 40 ${\mu}m$ occupied about over 90% of all. In treating sludge using microbubble ozones, in case microbubble ozones are injected at microbubble ozone dosage of 0.34 g $O_3/g$ SS or less regardless of sludge concentration, microbubble ozone consumption rate was found to be 100% with no emission of waste ozones. In treating sludges by each concentration, in case the initial SS concentration of sludge is set to 6,447 mg/L, 5,557 mg/L, 3,180 mg/L, 1,092 mg/L and 515 mg/L, the amount of removed SS tended to increase with increase in initial SS concentration for the same microbubble ozone dosage, and treatment of sludge with high initial SS concentration was effective in raising the oxidation efficiency of microbubble ozones. On the other hand, as a result of reviewing acid, alkali and microbubble ozone treatment as composite treatment of sludge, use of acid treatment for the pre-treatment of microbubble ozone was more effective than alkali treatment, and in case of treatment at microbubble ozone dosage 0.05g $O_3/g$ SS with the concentration of sulfuric acid infused in the sludge, the amount of removed SS, 153.9 g, was 1.9 times more than 81.2 g the amount of single treatment of microbubble ozone.

Determination of Organic Polyelectrolyte Addition Method to Improve Dewaterbility of Alum Sludge (정수 슬러지의 탈수성 개선을 위한 고분자 응집제 조합주입 고찰)

  • Yu, Taejong;An, Gyunhwan;Park, Sangjun;Hyun, Mi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.608-618
    • /
    • 2004
  • Since polyelectrolytes have been used as conditioners, conventionally only a single polyelectrolyte has been added for sludge conditioning. However, the amount of polyelectrolyte needed for optimal conditioning of sludge is very critical. Overdosing reduces the sludge dewaterbility. In this experimental study, sludge conditioning with single or dual polyelectrolyte was conducted to avoid problems associated with overdosing. Single polyelectrolyte conditioning was conducted by one of cationic, nonionic, and anionic polyelectrolytes. The dual polyelectrolyte conditioning was performed by adding one polyelectrolyte and another one in sequence. The dewaterbility of sludges were measured by SRF(specific resistance to filtration), TTF(time to filter), CST(capillary suction time) respectively. Additionally, parameters such as turbidity, zeta potential, viscosity of conditioned sludges or supematant were measured to evaluate the changed characteristics of sludge by addition of polyelectrolytes. From the experiment results, it was concluded that single polyelectrolyte conditioning had a high probability of overdosing, whereas dual polyelectrolyte conditioning resulted in a better dewaterbility and less chance of overdosing. But, it was also found that dosing sequence in dual conditioning was very important according to the characteristics of sludge. Parameters such as viscosity, turbidity, zeta potential were found to be useful as a means of evaluating sludge dewaterbility.

Effects of the application of Sewage Sludge on the Growth of Chinese Cabbage(Brassica campestris L.) and Changes in Soil Chemical Properties. (불수 sludge 시용이 배추의 생육과 토양의 화학성 변화에 미치는 영향)

  • 김수영;조경철;정순주
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.1
    • /
    • pp.61-73
    • /
    • 2001
  • This study was conducted to investigate the effect of sewage sludge application on the growth of chinese cabbage and the changes of chemical properties of soil. The experiment were set up with two different place and cultivated from Feb. 10 to June. 20 of 2000. Treatments are 0, 1.25, 2.5, 5, 10 and 20kg/3.3$\m^2$ of sewage sludge applicated into the soil and recorded the growth characteristics. Chemical properties of soil were also analysed before and after treatment. The application of the sewage sludge resulted in increasing the content of EC, cations exchange capacity, available phosphate and organic matter. And increased the growth characteristics in terms of the number of leaves, leaf area, fresh and dry weight regardless of crops experiments. Optimum amount of the sewage sludge depended on chemical properties of soil used. This results demonstrated that application of sewage sludge in the soil attribute to have play an important both improving soil chemical properties and promoting the crop growth. As lowering the soil pH(pH 6) heavy metal content increased compared with higher pH(pH 7). Feasibility was recognized in the application of sewage sludge as a fertilizer for the growth of chinese cabbage. Detrimental effects such as heavy metal in the soil and crop followed by the application of sewage sludge was not observed.

  • PDF

혐기성 슬러지를 첨가한 오염 토양에서 저자 수용체 조건에 따른 디젤 분해 및 미생물 군집 변화

  • 이태호;최선열;박태주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.207-210
    • /
    • 2004
  • Effect of electron accepters on anaerobic degradation of petroleum hydrocarbons by an anaerobic sludge taken from a sludge digestion tank in a soil artificially contaminated with 10,000 mg/kg soil of diesel fuel was tested. Treatments of soil with 30 mL of the digestion sludge (2,000 mg/L of vss (volatile suspended solids)) were incubated under several anaerobic conditions including nitrate reducing, sulfate reducing, methanogenic, and mixed electron accepters conditions for 120 days. Treatments with the digested sludge showed significant degradation of diesel fuel under all anaerobic conditions compare to control treatments with an autoclaved sludge and without the sludge. The amount of TPH degradation after 120days incubation was the largest in the treatment with the sludge and mixed electron accepters (75% removal of TPH) followed in order by sulfate reducing, nitrate reducing, methanegenic condition as 67%, 53%, 43%, respectively. However, the rate of TPH degradation in the nitrate- and sulfate reducing condition within 105 days were comparable with that of the mixed electron accepters condition. Microorganisms in each electron acceptor condition were plated on solid mediums containing nitrate or sulfate as sole electron acceptor and several nitrate- and sulfate reducing bacteria showed effective degradation of diesel fuel within 30 days incubations. These results suggest that anaerobic degradation of diesel fuel in soil with digested sludge is effective for practical remediation of soil contaminated with petroleum hydrocarbons.

  • PDF

Bio-oil production using residual sewage sludge after lipid and carbohydrate extraction

  • Supaporn, Pansuwan;Ly, Hoang Vu;Kim, Seung-Soo;Yeom, Sung Ho
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.202-210
    • /
    • 2019
  • In order to maximize the utilization of sewage sludge, a waste from wastewater treatment facility, the residual sewage sludge generated after lipid and carbohydrate extraction for biodiesel and bioethanol production was used to produce bio-oil by pyrolysis. Thermogravimetric analysis showed that sludge pyrolysis mainly occurred between 200 and $550^{\circ}C$ (with peaks formed around 337.0 and $379.3^{\circ}C$) with the decomposition of the main components (carbohydrate, lipid, and protein). Bio-oil was produced using a micro-tubing reactor, and its yield (wt%, g-bio-oil/g-residual sewage sludge) increased with an increase in the reaction temperature and time. The maximum bio-oil yield of 33.3% was obtained after pyrolysis at $390^{\circ}C$ for 5 min, where the largest amount of energy was introduced into the reactor to break the bonds of organic compounds in the sludge. The main components of bio-oil were found to be trans-2-pentenoic acid and 2-methyl-2-pentenoic acid with the highest selectivity of 28.4% and 12.3%, respectively. The kinetic rate constants indicated that the predominant reaction pathway was sewage sludge to bio-oil ($0.1054min^{-1}$), and subsequently to gas ($0.0541min^{-1}$), rather than the direct conversion of sewage sludge to gas ($0.0318min^{-1}$).

The Characteristics of Sludge Landfill Site in Nanjido (난지도 하수슬러지 매립지의 슬러지 성상분석)

  • Namkoong, Wan;Hwang, Seon Suk;Kim, Chul Soo;Yeun, Bum Han;Ryu, Bum Su
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.47-53
    • /
    • 1996
  • This study was carried out to estimate the amount and the characteristics of sewage sludge disposed of in the Nanjido sludge landfill site. Boring test was conducted to estimated the landfill volume and to get sludge samples to be analyzed. Total analysis and leaching test were performed to find the characteristics of sewage sludge. The Nanjido sludge landfill site had the surface area of $50,000m^2$ and the average depth of 15m. The estimated sludge volume was 600,000ton. Sewage sludge in Nanjido sludge landfill site was very stable. Results of total analysis of heavy metals indicated that the sludge could be classified as a non-hazardous waste according to the California state regulation. The sludge also could be used as compost based on compost quality criteria of foreign countries. Results of Korea Extraction Procedure showed that sewage sludge in Nanjido sludge landfill site was not a hazardous waste.

  • PDF