• Title/Summary/Keyword: Slow release

Search Result 234, Processing Time 0.022 seconds

Differential Intracellular Localization of Mitotic Centromere-associated Kinesin (MCAK) During Cell Cycle Progression in Human Jurkat T Cells (인체 Jurkat T 세포에 있어서 세포주기에 따른 MCAK 단백질의 세포 내 위치변화)

  • Jun Do Youn;Rue Seok Woo;Kim Su-Jung;Kim Young Ho
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.253-260
    • /
    • 2005
  • Mitotic centromere-associated kinesin (MCAK), which is a member of the Kin I (internal motor domain) subfamily of kinesin-related proteins, is known to play a role in mitotic segregation of chromosome during M phase of the cell cycle. In the present study, we have produced a rat polyclonal antibody using human MCAK (HsMCAK) expressed in E. coli as the antigen. The antibody specifically recognized the HsMCAK protein (81 kDa), and could detect its nuclear localization in human Jurkat T cells and 293T cells by Western blot analysis. The specific stage of the cell cycle was obtained through blocking by either hydroxyl urea or nocodazole and subsequent releasing from each blocking for 2, 4, and 7 h. While the protein level of HsMCAK reached a maximum level in the S phase with slight decline in the $G_{2}-M$ phase, the electrophoretic mobility shift from $p81^{MCAK}\;to\;p84^{MCAK}$ began to be induced in the late S phase and reached a maximum level in the $G_{2}/M $ phase, and then it disappeared as the cells enter into the $G_{1}$ phase. Immunocytochemical analysis revealed that HsMCAK protein localized to centrosome and nucleus at the interphase, whereas it appeared to localize to the spindle pole, centromere of the condensed mitotic DNA, spindle fiber, or midbody, depending on the specific stage of the M phase. These results demonstrate that a rat polyclonal antibody raised against recombinant HsMCAK expressed in E. coli specifically detects human MCAK, and indicate that the electrophoretic mobility shift from $p81^{MCAK}\;to\;p84^{MCAK}$, which may be associated with its differential intracellular localization during the cell cycle, fluctuates with a maximum level of the shift at the $G_{2}-M$ phase.

Materialistic Characterization of Waste Egg Shell and Fundamental Studies for Its Application to Wastewater Treatment (폐달걀껍질의 활용을 위한 물성조사 및 폐수처리 응용에의 기초연구)

  • Kuh, Sung-Eun;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.733-742
    • /
    • 2000
  • Fundamental materialistic characterization and adsorption/neutralization behavior of waste egg shell for heavy metal ion have been studied for its application to wastewater treatment. To investigate the structural change and thermal decomposition characteristics of egg shell. X-ray diffraction and FT-IR analysis were conducted for egg shell treated at $105^{\circ}C$ and $700^{\circ}C$, respectively. For the result of FT-IR analysis, the sample treated at $700^{\circ}C$ showed a reduced C-O absorption band compared with that of egg shell treated at $105^{\circ}C$, which may be due to the $CO_2$ release. Unlike to the result of FT-IR analysis, the XRD patterns of egg shell were almost similar for the cases of $105^{\circ}C$ and $700^{\circ}C$ treatment. however, characteristic diffraction pattern of CaO was observed for $850^{\circ}C$ treatment, at which $CaCO_3$ is known to be completely converted to CaO. TGA/DTA analysis showed a slow decline in weight loss up to $600^{\circ}C$ and, for $600{\sim}800^{\circ}C$ range, the weight loss became drastic by reason of $CO_2$ discharge, which was accompanied by an appearance of major endothermic peak. The ratio of practical breakthrough time to ideal one, total transfer unit, and mass transfer coefficient were observed to be increased as the adsorption was progressed in a multiple-column fixed-bed reactor using egg shell as an adsorbent, which signified the distribution effect of mass transfer for continuous adsorption reaction. The neutralization effect of egg shell for several types of acidic wastewater made of different mineral acids was not much different from each other except for the case of $H_2SO_4$, for which the neutralization reaction was thought to be retarded by the formation of gypsum.

  • PDF

Concentrations and Natural 15N Abundances of NO3-N in Groundwater and Percolation Water from Intensive Vegetable Cultivation Area in Japan (일본 노지채소 집약 재배지역 토양 침출수 중의 NO3-N 농도와 질소 안정동위원소 자연존재비(δ15N))

  • Park, Kwang-Lai;Choi, Jae-Seong;Baek, Hyung-Jin;Kim, Won-Il;Jung, Goo-Bok;Yun, Sun-Gang;Cho, Jin-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.119-126
    • /
    • 2003
  • Nitrate-N concentrations and the corresponding ${\delta}^{15}N$ values were determined with water samples collected periodically from artesian wells (3 and 6 m deep), underdrainage and gushout waters in a Welsh onion cultivated area in the Kushibiki Fan, Saitama Prefecture, Japan. Average $NO_3-N$ concentrations in waters from 3 and 6 m wells were 25.7 and $2.8mg\;L^{-1}$, whereas ${\delta}^{15}N$ values were 3.6 and 4.7‰, respectively. The $NO_3-N$ concentration and ${\delta}^{15}N$ value of the underdrainge water were $35.5mg\;L^{-1}$ and 6.6‰, reflecting rapid input of chemical fertilizers and farmyard manure. The mean values of $NO_3-N$ concentration and ${\delta}^{15}N$ in the gushout water flown out of the edge of Kushibiki Fan were $19.4mg\;L^{-1}$ and 7.9‰, respectively. As a results the ${\delta}^{15}N$ values of the gushout water were higher than those of the artesian wells and underdrinage water. The ${\delta}^{15}N$ values of total-N and $NO_3-N$ of the soils were 6.1 and 5.10‰, respectively, while those for nitrification-inhibitor containing fertilizer and slow-release fertilizers were -6.1 and -2.2‰, respectively.

The synthesis of dextran from rice hydrolysates using Gluconobacter oxydans KACC 19357 bioconversion (Gluconobacter oxydans 생물전환을 통한 쌀 가수분해물 유래 dextran 합성)

  • Seung-Min Baek;Hyun Ji Lee;Legesse Shiferaw Chewaka;Chan Soon Park;Bo-Ram Park
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.149-160
    • /
    • 2024
  • Dextran is a glucose homo-polysaccharide with a predominantly α-1,6 glycosidic linkage of microbial source and is known to be produced primarily by lactic acid bacteria. However, it can also be obtained through the dextran dextrinase of acetic acid bacteria (Gluconobacter oxydans). The dextrin-based dextran was obtained from rice starch using G. oxydans fermentation of rice hydrolysate, and its properties were studied. Both dextrin- and rice hydrolysate-added media maintained the OD value of 6 after 20 h of incubation with acetic acid bacteria, and the gel permeation chromatography (GPC) analysis of the supernatant after 72 h of incubation confirmed that a polymeric material with DP of 480 and 405, which was different from the composition of the substrate in the medium, was produced. The glucose linkage pattern of the polysaccharide was confirmed using the proton nuclear magnetic resonance (1H-NMR) and the increased α-1,4:α-1,6 bond ratio from 0.23 and 0.13 to 1:2.37 and 1:4.4, respectively, indicating that the main bonds were converted to α-1,6 bonds. The treatment of dextrin with a rat-derived alpha-glucosidase digestive enzyme resulted in a slow release of glucose, suggesting that rice hydrolysate can be converted to dextran using acetic acid bacteria with glycosyltransferase activity to produce high-value bio-materials with slowly digestible properties.