• Title/Summary/Keyword: Slow processes

Search Result 158, Processing Time 0.022 seconds

A Dialectical Perspective of Korean Food Culture Through Korean Literature (한국 식생활 문화의 변증법적 관계 - 한국 문학작품을 중심으로 -)

  • Kim, Yeong-Soo;Cho, Yoon-Jun;Moon, Sung-Won
    • Journal of the Korean Society of Food Culture
    • /
    • v.28 no.4
    • /
    • pp.329-338
    • /
    • 2013
  • Korean culinary culture is traditionally studied through the analysis of foods ingested. However, this study attempts to dialectically reinterpret Korean culinary culture through its relationship to Korean literature. In our study we consider culinary culture prior to the development of scientific techniques and economic growth related to food as "dietary lifestyle of the innocent world" and time since then as "the dietary lifestyle of the experience world". The former represents a simple means of survival without food processing (the "slow food" world), while the latter represents the "fast food" or processed food culture as a modern concept. People living in the age of economic growth and overflowing individualism have lacked an organic life and an opportunity to commune with nature. As a result, they have returned to values of the past, seeking the "slow food" culture to benefit their individual health. A series of return processes, however, were transformed into "the dietary life style of the higher innocence," called "a well-being dietary life style" involving a new healthy conception passing through the dietary life style of the experience world. Therefore, the purpose of this study is to investigate the dietary lifestyles of the "innocent" world and the "experience" world based on dialectic concepts. Individual concepts of "thesis" and "antithesis" are applied, as well as the developmental concept of "synthesis" for the way both symbolic worlds changed to "the dietary lifestyle of the higher innocence" and formed complementary relationships to each other.

Experimental analysis on the channel adjustment processes by weir removal (실내실험에 의한 기능을 상실한 보 철거로 인한 하도의 적응과정 분석)

  • Jang, Chang-Lae;Lee, Kyung Su
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.951-960
    • /
    • 2020
  • This study investigates the adjustment processes of the rivers after weir removal through laboratory experiments. Delta upstream eroded rapidly by flow at the initial stage of the experiments and the knickpoint migrates upward. Moreover, the knickpoint moves fast upward on the condition of alternate bars. The head cutting in the bed is developed fast at the initial stage. However, the erosion speed in the bed decreases with time. The well developed alternate bars migrates with keeping their shape downstream, and the bars affect the channel downstream to adjust new environments after weir removal. Maximum scouring depth downstream and the migration speed decrease over time after removing the weir. The scouring depth in the channel without alternate bars migrates with speed. However, the depth in the channel with alternate bars migrates slow downstream. The channel with alternate bars, in turn, is adjusted well to the new equilibrium states. The maximum scouring depth migrates downstream with time, and the scouring depth and its migration speed decreases with time. The dimensionless maximum scouring depth decreases with the migration speed of dimensionless maximum scouring depth because the deeply scoured places capture the sediments from upstream and the migration speed is slow as the places are filled with them. The dimensionless maximum scouring depth is shallow as the dimensionless backfilling speed is high. The dimensionless maximum scouring depth decreases rapidly less than 5 of dimensionless backfilling speed. However, the depth decreases slow more than 5 of it.

On the Reaction Kinetics of GaN Particles Formation from GaOOH (GaOOH로부터 GaN 분말 형성의 반응역학에 관하여)

  • Lee Jaebum;Kim Seontai
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.348-352
    • /
    • 2005
  • Gallium oxyhydroxide (GaOOH) powders were heat-treated in a flowing ammonia gas to form GaN, and the reaction kinetics of the oxide to nitride was quantitatively determined by X-ray diffraction analysis. GaOOH turned into intermediate mixed phases of $\alpha-\;and\;\beta-Ga_2O_3$, and then single phase of GaN. The reaction time for full conversion $(t_c)$ decreased as the temperature increased. There were two-types of rapid reaction processes with the reaction temperature in the initial stage of nitridation at below $t_c$, and a relatively slow processes followed over $t_c$ does not depends on temperatures. The nitridation process was found to be limited by the rate of an interfacial reaction with the reaction order n value of 1 at $800^{\circ}C$ and by the diffusion-limited reaction with the n of 2 at above $1000^{\circ}C$, respectively, at below $t_c$. The activation energy for the reaction was calculated to be 1.84 eV in the temperature of below $830^{\circ}C$, and decreased to 0.38 eV above $830^{\circ}C$. From the comparative analysis of data, it strongly suggest the rate-controlling step changed from chemical reaction to mass transport above $830^{\circ}C$.

A Conclusive Review on Amyloid Beta Peptide Induced Cerebrovascular Degeneration and the Mechanism in Mitochondria

  • Merlin, Jayalal L.P.
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.125-137
    • /
    • 2013
  • Promising evidence suggests that amyloid beta peptide ($A{\beta}$), a key mediator in age-dependent neuronal and cerebrovascular degeneration, activates death signalling processes leading to neuronal as well as non-neuronal cell death in the central nervous system. A major cellular event in $A{\beta}$-induced apoptosis of non-neuronal cells, including cerebral endothelial cells, astrocytes and oligodendrocytes, is mitochondrial dysfunction. The apoptosis signalling cascade upstream of mitochondria entails $A{\beta}$ activation of neutral sphingomyelinase, resulting in the release of ceramide from membrane sphingomyelin. Ceramide then activates protein phosphatase 2A (PP2A), a member in the ceramide-activated protein phosphatase (CAPP) family. PP2A dephosphorylation of Akt and FKHRL1 plays a pivotal role in $A{\beta}$-induced Bad translocation to mitochondria and transactivation of Bim. Bad and Bim are pro-apoptotic proteins that cause mitochondrial dysfunction characterized by excessive ROS formation, mitochondrial DNA (mtDNA) damage, and release of mitochondrial apoptotic proteins including cytochrome c, apoptosis inducing factor (AIF), endonuclease G and Smac. The cellular events activated by $A{\beta}$ to induce death of non-neuronal cells are complex. Understanding these apoptosis signalling processes will aid in the development of more effective strategies to slow down age-dependent cerebrovascular degeneration caused by progressive cerebrovascular $A{\beta}$ deposition.

Effect of Welding Processes on Corrosion Resistance of UNS S31803 Duplex Stainless Steel

  • Chiu, Liu-Ho;Hsieh, Wen-Chin
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.36-40
    • /
    • 2003
  • An attractive combination of corrosion resistance and mechanical properties in the temperature range -50 to $250^{\circ}C$ is offered by duplex stainless steel. However, undesirable secondary precipitation phase such as $\sigma$, $\gamma_2$ and $Cr_2N$ may taken place at the cooling stage from the welding processes. Therefore, this paper describes the influence of different welding procedures such as manual metal arc welding (MMA), tungsten inert gas welding (TIG) and vacuum brazing on corrosion resistance of the welded joint for UNS S31803 duplex stainless steel. Microstructure and chemical compositions of the welded joint were examined. The weight loss of specimens immersed in 6% $FeCl_3$ solution at $47.5^{\circ}C$ for 24-hours was determined and used to evaluate the pitting resistance of duplex stainless steel and their welds. The region of heat-affected zone of specimen obtained by the MMA is much wider than that resulted from TIG, therefore, the weight loss of welds by MMA was larger than that of weld by TIG. The weight loss of brazed specimens cooled from slow cooling rate was larger than those of specimens cooled from high cooling rate, because the precipitation of $\sigma$ phase. Beside that, the weight loss of brazed specimen is greater than those of the welded specimens. The galvanic corrosion was observed in brazed duplex stainless steel joints in the chloride solution.

Treatment of Phosphorus and Suspended Solid in Reject Water of Sewage Using an Integrated Slow Mixing/Sedimentation and Net Fit Fiber Filtration System (일체형 완속교반/침전 그물망 압착식 섬유여과장치를 이용한 하수처리장 반류수 내 고농도 인 및 부유물질 처리)

  • Kim, Jeongsook;Kim, Min-Ho;Kim, Mi-Ran;Jang, Jeong-Gook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.816-821
    • /
    • 2017
  • An integrated slow mixing/sedimentation and net fit fiber filtration system has been developed to reduce the high concentrations of suspended solid (SS) and total phosphorus (T-P) in the reject water from sewage/wastewater. A filtration device used in this experiment consists of coagulation, in-line mixing, air injection, slow mixing/sedimentation, and filtration processes. The performance test using this device was carried out with six operational modes for reject water from sewage treatment plant. Experimental conditions used were 16.7, 33.3, 41.7 and 50.0 ton/day of flow rate and 2~4 of Al/P molar ratio. By injection of coagulant in each operational mode, the high removal efficiencies of SS and T-P were obtained, but continuous operation time was decreased to 7.8~11.4 min in most modes. However, when the Mode 5 of the developed filtration device was applied, the continuous operation time was maintained up to 88.2 min. Also, it was found that the continuous operation time in the Mode 5 using the developed system was increased from 8 to 11.3 times longer than those in other modes. Backwashing flow rate was also very low at 5.4% of total filtered water. Therefore, it can be concluded that the Mode 5 of the developed filtration system was the most efficient treatment method for the removal of high concentrations of SS and T-P.

Numerical Simulation of 3-Dimensional Fluid Flow and Dust Concentrations in a Steel Foundry (제강 작업장내 삼차원 유동장 및 먼지농도의 수치 모사)

  • Cho, Hyun-Ho;Hong, Mi-Ok;Cho, Seog-Yeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • The steel foundries with electric arc furnaces handling metal scraps have recently gained an attention as a potential source of dusts. The present study focuses on the analysis of dust emissions and removals during furnace charging and melting processes by commercial CFD software named FLUENT. A body fitted grid system consisting of 880,000 meshes was first generated by Gambit for the electric arc furnace with the capacity of 60 ton/cycle and then FLUENT was invoked to solve the corresponding NavierStokers equation for the momentum, temperature and dust concentration. The entire processes from metal charging to metal melting were simulated to investigate the unsteady behaviors of fluid flows and dust concentrations. The model simulation results showed that as the top of the electric arc furnace opened for metal charging, hot plumes bursted out from the furnace rose strongly by buoyance and escaped mostly through the main hood. Therefore, the capacity of main hoods determined the vent efficiency in the metal charging process. As the furnace was closed after the metal charging and the metal melting processes was followed, the hot flow stream stretching from the furnace to the main hood was dissipated fast and the flow from the inlet of the bottom of the left hand side to the main and monitoring hoods constituted the main stream. And there was only a slow flow in the right hand side of the furnace. Therefore, the dust concentrations were calculated higher in the left hand side of the furnace, which was consistent with observations.

MODELING LONG-TERM PAH ATTENUATION IN ESTUARINE SEDIMENT, CASE STUDY: ELIZABETH RIVER, VA

  • WANG P.F;CHOI WOO-HEE;LEATHER JIM;KIRTAY VIKKI
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.1189-1192
    • /
    • 2005
  • Due to their slow degradation properties, hydrophobic organic contaminants in estuarine sediment have been a concern for risks to human health and aquatic organisms. Studies of fate and transport of these contaminants in estuaries are further complicated by the fact that hydrodynamics and sediment transport processes in these regions are complex, involving processes with various temporal and spatial scales. In order to simulate and quantify long-term attenuation of Polycyclic Aromatic Hydrocarbons (PAH) in the Elizabeth River, VA, we develop a modeling approach, which employs the U.S. Environmental Protection Agency's water quality model, WASP, and encompasses key physical and chemical processes that govern long-term fate and transport of PAHs in the river. In this box-model configuration, freshwater inflows mix with ocean saline water and tidally averaged dispersion coefficients are obtained by calibration using measured salinity data. Sediment core field data is used to estimate the net deposition/erosion rate, treating only either the gross resuspension or deposition rate as the calibration parameter. Once calibrated, the model simulates fate and transport PAHs following the loading input to the river in 1967, nearly 4 decades ago. Sediment PAH concentrations are simulated over 1967-2022 and model results for Year 2002 are compared with field data measured at various locations of the river during that year. Sediment concentrations for Year 2012 and 2022 are also projected for various remedial actions. Since all the model parameters are based on empirical field data, model predictions should reflect responses based on the assumptions that have been governing the fate and sediment transport for the past decades.

  • PDF

Materials Chemical Point of View for Durability Issues in Solid Oxide Fuel Cells

  • Yokokawa, Harumi;Horita, Teruhisa;Yamaji, Katsuhiko;Kishimoto, Haruo;Brito, M.E.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.26-38
    • /
    • 2010
  • Degradation in Solid Oxide Fuel Cell performance can be ascribed to the following fundamental processes from the materials chemical point of view; that is, diffusion in solids and reaction with gaseous impurities. For SOFC materials, diffusion in solids is usually slow in operation temperatures $800\sim1000^{\circ}C$. Even at $800^{\circ}C$, however, a few processes are rapid enough to lead to some degradations; namely, Sr diffusion in doped ceria, cation diffusion in cathode materials, diffusion related with metal corrosion, and sintering of nickel anodes. For gaseous impurities, chromium containing vapors are important to know how the chemical stability of cathode materials is related with degradation of performance. For LSM as the most stable cathode among the perovskite-type cathodes, electrochemical reduction reaction of $CrO_3$(g) at the electrochemically active sites is crucial, whereas the rest of the cathodes have the $SrCrO_4$ formation at the point where cathodes meet with the gases, leading to rather complicated processes to the degradations, depending on the amount and distribution of reacted Cr component. These features can be easily generalized to other impurities in air or to the reaction of nickel anodes with gaseous impurities in anode atmosphere.

Modeling for Soot Formation Coupled with Detailed Chemistry in Laminar Pressurized Non-premixed Flames (층류 고압 비예혼합 화염에서 상세화학반응과 결합된 매연입자 생성 모델링)

  • Kim, Taehoon;Jeon, Sangtae;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.139-140
    • /
    • 2012
  • In laminar non-premixed flame situation, the flamelet model is not suitable for simulating slow processor like soot and radiation. Thus in this study, we overcome this limitation by using the transient flamelet model. Also, for soot formation on laminar non-premixed flame, transient flamelet coupled with two-equation soot model has been adopted due to its inherent advantages in terms of accuracy and availability. Based on numerical results, the detailed discussion has been made for the precise structure and soot formation processes in the pressurized methane air flames.

  • PDF