• 제목/요약/키워드: Slow Sand Filtration

검색결과 16건 처리시간 0.017초

2단 망간모래여과에 의한 고농도 망간 처리 (Removal of High Concentration Manganese in 2-stage Manganese Sand Filtration)

  • 김충환;윤종섭;임재림;김성수
    • 상하수도학회지
    • /
    • 제21권4호
    • /
    • pp.503-508
    • /
    • 2007
  • Small scale D-water treatment plant(WTP) where has slow sand filtration was using raw water containing high concentration of manganese (> 2mg/l). The raw water was pre-chlorinated for oxidation of manganese and resulted in difficulty for filtration. Thus, sometimes manganese concentration and turbidity were over the water quality standard. Two stage rapid manganese sand filtration pilot plant which can treat $200m^3/d$ was operated to solve manganese problem in D-WTP. The removal rate of manganese and turbidity were about 38% and 84%, respectively without pH control of raw water. However, when pH of raw water was controlled to average 7.9 with NaOH solution, the removal rate of manganese and turbidity increased to 95.0% and 95.5%, respectively and the water quality of filtrate satisfied the water quality standard. Manganese content in sand was over 0.3mg/g which is Japan Water Association Guideline. The content in upper filter was 5~10 times more than that of middle and lower during an early operation but the content in middle and lower filter was increased more and more with increase of operation time. This result means that the oxidized manganese was adsorbed well in sand. Rapid manganese sand filter was backwashed periodically. The water quality of backwash wastewater was improved by sedimentation. Thus, turbidity and manganese concentration decreased from 29.4NTU to 3.09NTU and from 1.7mg/L to 0.26mg/L, respectively for one day. In Jar test of backwash wastewater with PAC(Poly-aluminum chloride), optimum dosage was 30mg/L. Because the turbidity of filtrate was high as 0.76NTU for early 5 minute after backwash, filter-to-waste should be used after backwash to prevent poor quality water.

완속모래여과 공정에서 세라믹 MF 막의 적용 (Application of Ceramic MF Membrane at the Slow Sand Filtration Process)

  • 최광훈;박종율;김수한;김정숙;강임석
    • 대한환경공학회지
    • /
    • 제35권12호
    • /
    • pp.877-882
    • /
    • 2013
  • 최근 음용수를 위한 UF, MF 막의 적용이 증가하고 있다. UF/MF 막은 재래식 수처리 공정에 비하여 원수 수질 변화에도 안정적인 운전이 가능하고 부지 면적이 작으며 자동화 운전이 가능하다는 장점을 가지고 있다. 현재 대부분의 UF/MF 막시설은 고분자 막을 사용하고 있다. 최근 세라믹 막은 고분자막에 비하여 경쟁력이 있다고 알려지고 있다. 세라믹 막은 높은 투과유량과 약품세정 빈도가 작으며 막의 수명 또한 길어 최근 적용 사례가 증가하고 있다. 따라서 본 연구는 MF 세라믹 막 pilot plant를 완속모래여과 정수장에 적용하였다. 본 연구에 사용된 세라믹 Pilot plant는 3개의 계열이 있으며, 각 계열별로 원수와 모래 여과수를 막의 유입수로 각각 사용하였다. 또한 세라믹 막 공정의 최적화를 위하여 전처리 응집공정으로서 PACl 응집제를 사용하였다. 그리고 화학세정(Chemical Enhanced Backwashing, CEB)은 황산 (500 mg/L)과 차아염소산 (200 mg/L)을 1.5일에 1번씩 모든 계열에 주입하여 이루어졌다. 본 연구 결과 세라믹 막 공정의 전처리 응집공정에서 최적의 응집제 사용은 막의 유입수로 원수와 모래 여과수에 대한 막의 flux를 크게 증가시켰다. 또한 본 연구에서 사용된 최적 응집제 주입량에서 차압상승률은 원수(25 mg/L)의 경우 2.173 kPa/cycle이며, 모래 여과수(5 mg/L)의 경우 0.301 kPa/cycle으로 나타났다.

여재 종류에 따른 역삼투법 해수담수화 시설 전처리 여과공정의 성능비교 (Comparison of the filtration performance by different media in pretreatment of seawater desalination by reverse osmosis)

  • 김승현;윤종섭;이석헌
    • 상하수도학회지
    • /
    • 제23권2호
    • /
    • pp.215-222
    • /
    • 2009
  • This study compares the performance of the filters with various media in pretreatment of seawater desalination by reverse osmosis. For this purpose, Masan bay seawater is used as raw water. The filter performance is evaluated by the filtrate quality and the head loss development. Five media is selected in this study: anthracite, $Filtralite^{(R)}$, sand, Pumice, $AFM^{(R)}$. These media are used in combination for dual media filter and alone for mono media filter. The comparison results show that NC0.8-1.6 is the best $Filtralite^{(R)}$. The dual media filter of NC0.8-1.6 and sand outperformed other filters in particle removal. The dual media filter of anthracite and sand showed good performance in organic removal. The mono media filter of Pumice produced the similar filtrate quality as the mono media filter of sand although the effective size of Pumice is considerably greater than that of sand. Due to big size, head loss development is maintained slow in the filtration of Pumice.

재순환 양액재배시 저속 모래여과기 시스템을 이용한 진균류 제어 (Control of Several Fungi in the Recirculating Hydroponic System by Modified Slow Sand Filtration)

  • 박권우;이긍표;김민순;이성재;서명훈
    • 원예과학기술지
    • /
    • 제16권3호
    • /
    • pp.347-349
    • /
    • 1998
  • 본 실험은 국내 농가에서 가장 적용하기 간편하고 효율적인 모래여과(slow sand filtration)방법을 기초로 하였으며, 여러 가지 여과용 매질을 적용하여 병원균 제거 효율을 검정하고자 하였다. 양액 1,500 liter 여과후, 매질별 균 제거효율은 Fusarium oxysporum을 기준으로 볼 때, 활성탄 92.5%, 석영모래 90.8%, 버미큘라이트 90.5%, 강모래 82.3%, 펄라이트 50.4%, 하이드로볼 21.2% 순으로 나타났고, 균주별 시험의 경우, 석영모래를 기준으로 여과액에서 검정되는 최대 농도가 Fusarium oxysporum 120 cfu/mL. Collectotrichum lagenarium 98 cfu/mL. Phytophthora capsici 82 cfu/mL, Botrytis cinerea 62 cfu/mL, Pythium spp. 42 cfu/mL, Sclerotinia spp. 52 cfu/mL로 나타났다. 여과후, pH 및 EC의 변화는 석영모래를 기준으로 볼 때, pH는 약 7로유지되었고, EC 는 큰 차이가 없었다. '뚝섬 적축면' 상추와 '서광' 토마토를 담액수경으로 재배하며, 석영모래, 활성탄, 버미큘라이트를 충진물로 한 여과시스템을 적용한 결과, 균을 인위접종 후 10주 후까지 발병하지 않아, 본 여과시스템으로 효과적인 균제거가 가능함을 보여주었다. 실제 농가수준에서도 본 시스템을 적용할 경우, 균 제거능 및 경제성에 있어 효율적이라 사료된다.

  • PDF

Direct Horizontal-Flow Roughing Filtration의 조립 여상에서의 입자 제거 모델링 (Modeling of Particle Removal in the Coarse Media of Direct Horizontal-Flow Roughing Filtration)

  • 안효원;박노석;이선주;이경혁;왕창근
    • 상하수도학회지
    • /
    • 제19권3호
    • /
    • pp.338-347
    • /
    • 2005
  • Horizontal-Flow Roughing Filtration (HRF) is one of altemative pretreatment methods e.g. prior to Slow Sand Filtration (SSF). However, some of its limitations are that the effluent quality drops drastically at higher turbidity (>200 NTU) and at higher filtration rate (>1 m/h). To overcome these drawbacks, we suggested Direct Horizontal-Flow Roughing Filtration (DHRF), which is a modified system of Horizontal-Flow Roughing (HRF) by addition of low dose of coagulant prior to filtration. In this study to optimize the DHRF configuration, a conceptual and mathematical model for the coarse compartment has been developed in analogy with multi-plate settlers. Data from simple column settling test can be used in the model to predict the filter performance. Furthermore, the model developed herein has been validated by successive experiments carried out. The conventional column settling test has been found to be an handy and useful to predict the performance of DHRF for different raw water characteristics (e.g. coagulated or uncoagulated water, different presence of organic matter, etc.) and different inital process conditions (e.g. coagulant dose, mixing time and intensity, etc.). An optimum filter design for the coarse compartment (grain size 20mm) has been found to be of 3 m/h filtration rate with filter length of 4-4.5 m.

복류수를 이용한 한외여과공정의 장기운전 평가 (Long Term Evaluation of UF Membrane process using River-bed Water)

  • 김충환;임재림;강석형;김수한
    • 상하수도학회지
    • /
    • 제22권4호
    • /
    • pp.429-436
    • /
    • 2008
  • Membrane system has been increasingly considered as a safe and cost-effective water treatment process especially in case of small scale water works. This research is a basis of membrane application in water works through a long period test with obtaining operation skills and evaluation of water quality and cost competitiveness. For the research, the UF membrane system was installed in small water treatment plant that uses river-bed water as raw water. The system was consisted of 2 stage membrane and operated in constant flow mode (Flux: 1.5, 1.0, 0.9, 0.6). In each different flux condition, TMP trends were showed better results at lower flux condition. And through the high flux condition test, it is certified that membrane system could deal with breakdown of one stage. Water quality of permeate was satisfied the water quality standards especially turbidity. To know what mainly causes fouling on membrane, the test by membrane with several cleaning agents and EDX analysis have done in lab. Through the tests, ferrous concentration in raw water, backwashing water and membrane surface etc. was high and it causes fouling inside and outside of membrane. So acid cleaning using organic acid such as oxalic acid is necessary in Chemical in Place (CIP). At the economical aspect the electrical cost of membrane system is higher than that of slow sand filtration but labor cost can be reduced by automation. However, the use of labor should be determined considering effectiveness and stability of operation. Because during the operation, there are several breakdown such as electrical shock by lightning, water drop in summer, etc.