• Title/Summary/Keyword: Slotline Transition

Search Result 11, Processing Time 0.021 seconds

Transmission Line using Microstrip-Slotline Transition Technology and Its Application to Power Divider (마이크로스트립과 슬롯라인 천이기술을 이용한 전송선로 구현과 전력 분배기에 응용)

  • Kim, Young;Sim, Seok-Hyun;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.687-692
    • /
    • 2013
  • This paper presents a compact power divider using microstrip-slotline transition technology. By using the microstrip-slotline transition, the ${\lambda}/4$ transmission lines of the divider can be changed to two ${\lambda}/8$ transmission lines in the multilayer structure. In the microstrip-slotline transition, we have used via holes to make a short circuit at the microstrip line and embedded spiral configuration stubs to reduce the electrical length of an open circuit at the slotline end point. For validating the microstrip-slotline technique, we have simulated and implemented the power divider with embedded spiral and via hole configuration circuits at a frequency of 2 GHz. Good agreement between the simulation and the measurement results is obtained at the operating frequency.

Wideband Double Dipole Quasi-Yagi Antenna Using a Microstrip-to-Slotline Transition Feed

  • Ta, Son Xuat;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • This paper describes a wideband double dipole quasi-Yagi antenna fed by a microstrip-to-slotline transition. The transition feed consists of a microstrip radial stub and a slot radial stub, each with the same angle of $90^{\circ}$ but with different radii, to achieve wideband impedance matching. Double dipoles with different lengths are utilized as primary radiation elements to enhance bandwidth and achieve stable radiation patterns. The proposed antenna has a measured bandwidth of 3.34~8.72 GHz for a -10 dB reflection coefficient and a flat gain of $6.9{\pm}0.6$ dBi across the bandwidth.

Circuit Modeling of Transition from Stripline to Dual Slotline for the Notch Antenna

  • So, Joon-Ho;Kim, Jun-Yeon;Lee, Moon-Que;Cheon, Chang-Yul
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.1
    • /
    • pp.22-29
    • /
    • 2003
  • A circuit model for the transition of stripline to dual slotline and a segmented method to analyze a notch antenna are presented. For the circuit model of the transition, the characteristic impedance, dispersions, and the shorted impedance of dual slotline are calculated and approximated with the closed-form expressions. The segmented analysis method allows to get readily an optimized results for the dual slotline-fed notch antenna. As a design example, a notch antenna is segmented into a 4'h order Marchand balun and a dual slot 134 notch antenna, and tested to show the validity of the proposed circuit model.

  • PDF

Analysis and Design of Power Divider Using the Microstrip-Slotline Transition in Millimeter-Wave Band (밀리미터파 대역에서의 마이크로스크립-슬롯라인을 이용한 전력분배기의 해석 및 설계)

  • Jeong, Chulyong;Jeong, Jinho;Kim, Junyeon;Cheon, Changyul;Kwon, Youngwoo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.489-493
    • /
    • 1999
  • In this paper, an analysis of microstrip-slotline transition is performed using a 3D vector Finite Element Method(FEM). Artificial anistropic absorber technique is employed to implement an matching boundary condition in FEM. On the base of the analysis, power divider/combiner is designed. The structure of the power combiner already developed are Branch-line coupler, Rat-race coupler, Wilkinson coupler, Lange coupler, etc. Which are all planar, If the frequency goes up, the coupling efficiency of these planar couplers is decreased on account of skin loss. Especially, in millimeter-wave band, the efficiency of more than two ways combiner is radically reduced, so that application in power amplifier circuit is almost impossible, Microstrip-slotline transition structure is a power combining technique integrated into wave-guide, so that the loss is small and the efficiency is high. Theoretically, we can mount several transistors into the power-combiner. This makes it possible to develop a high power amplifier. The numerically calculated performances of the device that is, we believe, the best are compared to the experimental results in Ka-Band(26.5GHz-40GHz).

  • PDF

High Efficiency V-band Power Combining Modules Using Slotline-to-Microstrip Transition (슬롯라인-마이크로스트립 변환을 이용한 고효율 V-band 전력 결합 모듈)

  • Kim Dong-Ki;Jeong Jin-Ho;Kwon Young-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.6 s.97
    • /
    • pp.580-585
    • /
    • 2005
  • Two high-efficiency and high power power-combing modules were developed using slotline-to-microstrip transition at V-band. Power-combining modules incorporating two MMIC power amplifiers demonstrated combining efficiencies higher than $80\%$(maximum $86\%$) with saturated output power of 22.96 dBm and 22.81 dBm, respectively. The measurement of back-to-back connected combiners demonstrated insertion loss less than 1.2 dB with return loss better than 15 dB around 60 GHz, respectively.

A Novel Waveguide-based Ka-band Power Divider/Combiner Using Slotline-to-Microstrip Transitions (슬롯라인-마이크로스트립 변환을 이용한 도파관 형태의 Ka-band 전력 분배/결합기)

  • 정진호;천창율;권영우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.506-511
    • /
    • 2002
  • In this paper, waveguide-based power combiner using conventional slotline-to-microstrip transition was proposed at Ka-band. The proposed 2-way and 4-way power combiner consist of waveguide-to-slotline transition, two or four slotline-to-microstrip transitions, and impedance matching networks. Their structures were simulated and optimized by 3-D FEM simulation. The 2-way power combiner showed a very low back-to-back insertion loss of 1.0 dB and return loss better than 15 dB from 25.7 GHz to 29.8 GHz except the resonant frequency. The 2-way power combining approach was extended to 4-way power combining using slotline tee junction. The 4-way power combiner showed the similar performance to that of 2-way power combiner with 2 GHz smaller bandwidth.

A Study on the Microstrip-Slotline Transition (마이크로스트립 - 슬롯 선로간의 트랜지션에 관한 연구)

  • 이동철;이문수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.4
    • /
    • pp.604-609
    • /
    • 2002
  • Microstrip - slot line transitions are analyzed in the spectral domain. Some kinds of transitions which depend on the orientation angle between two lines and the stub types are designed and fabricated at 5GHz. It is shown that experiment results of the transition are in good agreement with those obtained from spectral domain analysis.

Low-Loss Broadband Planar Balun with CPW-to-Slotline Transition for UHF Applications

  • Hong, Young-Pyo;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.146-151
    • /
    • 2009
  • This paper presents a low-loss broadband balun that uses a coplanar waveguide-to-slotline field transformation. It operates over a very wide frequency range and is of compact size since it does not depend on a resonant structure. To analyse imbalance, the coplanar wavelength(CPW) input ground is connected to the CPW output ground through various capacitors to introduce common-mode impedances. As the common-mode impedance increased the imbalance became significantly higher at the higher-frequency band compared with the lower-frequency band. The bias-circuit approach is used to improve the operation bandwidth of the lower-frequency band. The measured results show a passband of 200 MHz to 2 GHz, an insertion loss of less than 0.75 dB, and a size of $20{\times}14\;mm$. The amplitude imbalance is approximately 0.3 dB and the phase imbalance is less than $6^{\circ}$ over the entire operational range.

The Analysis and Design Power Divider Using the Microstrip-Slotline Transition in Milimeter-Wave Band (밀리미터파대역에서의 마이크로스트림-슬롯라인 변환을 이용한 Power Divider의 해석 및 설계)

  • Jeong, Chul-Yong;Jeong, Jin-Ho;Kim, Jun-Yeon;Cheon, Chang-Yul;Kwon, Young-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1828-1830
    • /
    • 1998
  • In this paper, an analysis of microstrip-slotline transiton is performed using a 3D vector Finite Element Method(FEM). On the base of the analysis, power divider/combiner is designed. The optimal structure for equal power division in Ka band is also proposed.

  • PDF

A Study on a New Balun Structure with Vertically Periodic Defected Ground Structure (수직 결함 기저면 구조를 이용한 새로운 발룬 구조 연구)

  • Kim, Kwi-Soo;Kim, Chul-Soo;Song, In-Sang;Lim, Jong-Sik;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.785-790
    • /
    • 2008
  • In this paper, a new balun is proposed. This proposed balun has a DGS(Defected Ground Structure) pattern on the ground plane. The transmission-line is transformed by microstrip-to-slotline transition. DGS pattern on the ground plane and transition of the lines can be easily made a property of the balun. Resonance frequency of the DGS leads to operating frequency of the balun. Also the transition produces $180^{\circ}$ out-of-phase between two output ports without additional transmission line. In this paper, a new balun with VPDGS(Vertically Periodic Defected Ground Structure) effectively lower the operating frequency. To validate the proposed design method, the new balun is designed, fabricated and measured at 2 GHz.