• Title/Summary/Keyword: Slot waveguide

Search Result 144, Processing Time 0.021 seconds

An RFID Tag Using a Planar Inverted-F Antenna Capable of Being Stuck to Metallic Objects

  • Choi, Won-Kyu;Son, Hae-Won;Bae, Ji-Hoon;Choi, Gil-Young;Pyo, Cheol-Sig;Chae, Jong-Suk
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.216-218
    • /
    • 2006
  • This letter presents the design for a low-profile planar inverted-F antenna (PIFA) that can be stuck to metallic objects to create a passive radio frequency identification (RFID) tag in the UHF band. The designed PIFA, which uses a dielectric substrate for the antenna, consists of a U-slot patch for size reduction, several shorting pins, and a coplanar waveguide feeding structure to easily integrate with an RFID chip. The impedance bandwidth and maximum gain of the tag antenna are about 0.3% at 914 MHz for a voltage standing wave ratio (VSWR) of less than 2 and 3.6 dBi, respectively. The maximum read range is about 4.5 m as long as the tag antenna is on a metallic object.

  • PDF

An Eight-Way Radial Switch Based on SIW Power Divider

  • Lee, Dong-Mook;An, Yong-Jun;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.3
    • /
    • pp.216-222
    • /
    • 2012
  • This paper presents a single-pole eight-throw switch, based on an eight-way power divider, using substrate integrate waveguide(SIW) technology. Eight sectorial-lines are formed by inserting radial slot-lines on the top plate of SIW power divider. Each sectorial-line can be controlled independently with high level of isolation. The switching is accomplished by altering the capacitance of the varactor on the line, which causes different input impedances to be seen at a central probe to each sectorial line. The proposed structure works as a switching circuit and an eight-way power divider depending on the bias condition. The change in resonant frequency and input impedance are estimated by adapting a tapered transmission line model. The detailed design, fabrication, and measurement are discussed.

Moment method analysis of the moreno directional coupler (모멘트법을 이용한 moreno 방향성 결합기 해석)

  • 박면주;전대인;안병철;남상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.7
    • /
    • pp.1842-1849
    • /
    • 1996
  • This paper presents a full-wave, moment method analysis of a Moreno directional coupler with tow crossed-slots between two crossed rectangular waveguides. the overall structure is divided into several rectangular waveguides and cavities by the use of the equivalence principle to the complex slot regions. this enables a simple and efficient analysis involving the well-known retangular waveguide/cavity Green's functions. For a numerically efficient simulation, the roof-top basis expansion and line testing is used and an acceleration technique is applied to the series summation in the Green's functions. The numerical results are compared with the measurements to verify the correctness of the present analysis.

  • PDF

Analysis of characteristics on symmetric/asymmetric broadside-coupled coplanar waveguide using the spectral domain approach (주파수 영역 해석법을 이용한 대칭/비대칭 광역결합 동일 평면도파관 선로의 특성 해석)

  • 유태훈;홍익표;이용국;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.1968-1974
    • /
    • 1997
  • In this paper, the spectral domain approach is employed to investigate the characteristics of symmetrical and asymmetrical broadside-coupleed coplanar waveguides(BSC-CPW). These structures have large even(c)-odd(.pi.) mode-velocity ratio, suitable for wide-band and tight-coupling microwave circuit design. Efficient design parameters can be obtained from the effective dielectric constants and characteristic impedances calculated by varying the strip widths and slot widths in the BSC-CPW structure.

  • PDF

Design of a Multi-Band Antenna with CPWG Feed Line for the Telematics Mobile Device (Telematics 단말기를 위한 CPWG 급전방식 다중대역 안테나 설계 및 제작)

  • Jee, Bong-Soo;Jeong, Gye-Taek;Kim, Woo-Soo;Lee, Haw-Choon;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2009
  • In this paper, the multi-band antenna with CPWG(Coplanar Waveguide with Ground) feed for telematics mobile devices is designed and fabricated. The proposed antenna improves the return loss characteristic by using open-circuited stub matching and rectangular slot in the radiation patch. In addition, CPWG structure makes up for the drawback of the CPW which is variation of impedance matching according to the gap variation of the feed line and the ground. The fabricated antenna has 1.4GHz ($1.43GHz{\sim}2.83GHz$, 65%) band width on -10dB (VSWR<2) and the maximum gains are 0.8dBi, 1.34dBi, 2.41dBi, 2.53dBi, 2.6dBi and 1.51dBi on each resonant frequency that are GPS $(1.564GHz{\sim}1.585GHz)$, PCS/DCS $(1.710GHz{\sim}1.984GHz)$, WCDMA $(2.170GHz{\sim}2300GHz)$, Bluetooth/Wi-Fi/WLAN $(2.4GHz{\sim}2.483GHz)$, WiBro $(2.3GHz{\sim}2.4GHz)$, SDMB $(2.605GHz{\sim}2.655GHz)$. It also has an omni-directional radiation pattern of H-Plane.

  • PDF

Development of Microwave Water Surface Current Meter for General Use to Increase Efficiency of Measurements of River Discharges (하천유량측정의 효율성 향상을 위한 범용 전자파표면유속계 개발)

  • Kim, Youngsung;Noh, Joonwoo;Choi, Kwangsoon
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.225-231
    • /
    • 2014
  • Discharge measurement during flood season is very difficult. Microwave water surface current meter (MWSCM) can measures river surface velocities easily without contacting water. This study introduces its improved version, MWSCM for general use. The existing version of MWSCM is for floods so that its applicable period in a year is short. It has been improved to extend its applicability in a year. The range of measurable velocity for MWSCM for general use is extended so it can be applied during normal flows as well as high flows. MWSCM for general use can measure the velocity range of $0.03{\sim}20.0ms^{-1}$, whereas MWSCM for floods can measure the velocity range of $0.5{\sim}10.0ms^{-1}$. To make such innovation of MWSCM for general use, the applied microwave frequency of MWSCM was changed from 10 GHz to 24 GHz. Waveguide slot array antenna has been designed with the new development of the circuit of transmitting and receiving part. Improvement requests on the existing MWSCM for floods - weight lightening, measured velocity stabilization, self-test, low power consumption, and waterproof and dampproof - from the users of it have been reflected for the development of the new version of MWSCM.

Improved Plasmonic Filter, Ultra-Compact Demultiplexer, and Splitter

  • Rahimzadegan, Aso;Granpayeh, Nosrat;Hosseini, Seyyed Poorya
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.261-273
    • /
    • 2014
  • In this paper, metal insulator metal (MIM) plasmonic slot cavity narrow band-pass filters (NBPFs) are studied. The metal and dielectric of the structures are silver (Ag) and air, respectively. To improve the quality factor and attenuation range, two novel NBPFs based on tapered structures and double cavity systems are proposed and numerically analyzed by using the two-dimensional (2-D) finite difference time domain (FDTD) method. The impact of different parameters on the transmission spectrum is scrutinized. We have shown that increasing the cavities' lengths increases the resonance wavelength in a linear relationship, and also increases the quality factor, and simultaneously the attenuation of the wave transmitted through the cavities. Furthermore, increasing the slope of tapers of the input and output waveguides decreases attenuation of the wave transmitted through the waveguide, but simultaneously decreases the quality factor, hence there should be a trade-off between loss and quality factor. However, the idea of adding tapers to the waveguides' discontinuities of the simple structure helps us to improve the device total performance, such as quality factor for the single cavity and attenuation range for the double cavity. According to the proposed NBPFs, two, three, and four-port power splitters functioning at 1320 nm and novel ultra-compact two-wavelength and triple-wavelength demultiplexers in the range of 1300-1550 nm are proposed and the impacts of different parameters on their performances are numerically investigated. The idea of using tapered waveguides at the structure discontinuities facilitates the design of ultra-compact demultiplexers and splitters.

Design of Circularly Polarized Multi Band Antenna for Non-Linear Junction Detector System (비선형 소자 탐지 시스템용 원편파 다중 공진 안테나의 설계)

  • Kim, Jeong-Won;Min, Kyoeng-Sik;Park, Chan-Jin;Jeong, Jae-Hwan;Lee, Sak;Kwon, Hae-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.292-299
    • /
    • 2012
  • This paper proposes the design of circularly polarized multi band antenna for a non-linear junction detector (NLJD) system. In order to design for broad bandwidth, the CPW (Co-Planar Waveguide) feeding method is considered in this design. In order to realize the circular polarization, the axial ratio was controlled by inserting a $45^{\circ}$ inclined slot on radiating element and by cutting an edge of the radiating patch. Measurement results of return loss, bandwidth, axial ratio, polarization pattern and gain are agreed well with their simulation results in interested frequency band at 2.4~ 2.44 GHz, 4.84~4.92 GHz, and 7.28~7.32 GHz.

Development of an Electromagnetic Analysis Methodology for the Aspheric Ogival Radome (원뿔형 비구면 레이돔에 대한 전자파 해석 기법 개발)

  • Seo, Seung-Hee;Cho, Ji-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.617-624
    • /
    • 2009
  • In this paper, an electromagnetic analysis methodology using reaction theorem based on reciprocity theorem is presented for the aspheric ogival radome applied to a missile and/or airborne radar. The presented analysis methodology is verified using actual measured data. The type of antenna assumed to develope the methodology is a waveguide slot array antenna, and has the structure of 2 axes monopulse of "X" type. The shape of radome is assumed as Von Karman and the ratio of length to base diameter(L/D) is assumed to be 2:1. The electrical characteristics of the radome are measured using radome measurement system and the results are compared to the values estimated using the presented analysis methodology. It is found that the comparison shows good agreement. It is expected that the presented methodology can be applied for the development of missile and airborne radome.

A study on basic characteristics of transmission lines employing various periodic strip structures on silicon substrate for a miniaturization of RF components (RF 소자의 소형화를 위해 실리콘 박막상에서 다양한 형태의 주기적 스트립 구조를 가지는 전송선로의 기본특성 연구)

  • Han, Sung-Jo;Jeong, Jang-Hyeon;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.70-77
    • /
    • 2014
  • In this work, we studied basic characteristics of transmission lines employing various PSS (periodic strip structure) on silicon substrate for application to a miniaturization of RF components. According to the results, the transmission lines employing various PSS showed wavelength shorter than conventional coplanar waveguide due to their strong wave characteristics. Especially, with-contact structure was most effective for a miniaturization of RF component. Concretely, the size of the transmission line employing with-contact was only 4.39 % of the conventional coplanar waveguide, According to the bandwidth extraction result, the bandwidth of the transmission lines employing various PSS structures were wider than 384 GHz. Above results indicate that the transmission lines employing various PSS can be effectively used for application to a broadband and miniature RF component, and especially, with-contact is most effective for a miniaturization of RF components.