• 제목/요약/키워드: Sloshing Damping Coefficient

검색결과 4건 처리시간 0.017초

투과성 격벽을 이용한 수평 운동하는 사각형 탱크내의 슬로싱 감쇠 (Sloshing Damping in a Swaying Rectangular Tank Using a Porous Bulkhead)

  • 조일형
    • 한국해양공학회지
    • /
    • 제32권4호
    • /
    • pp.228-236
    • /
    • 2018
  • The performance of a porous swash bulkhead for the reduction of the resonant liquid motion in a swaying rectangular tank was investigated based on the assumption of linear potential theory. The Galerkin method (Porter and Evans, 1995) was used to solve the potential flow model by adding a viscous frictional damping term to the free-surface condition. By comparing the experimental results and the analytical solutions, we verified that the frictional damping coefficient was 0.4. Darcy's law was used to consider the energy dissipation at a porous bulkhead. The tool that was developed with a built-in frictional damping coefficient of 0.4 was confirmed by small-scale experiments. Using this tool, the free-surface elevation, hydrodynamic force (added mass, damping coefficient) on a wall, and the horizontal load on a bulkhead were assessed for various combinations of porosity and submergence depth. It was found that the vertical porous bulkhead can suppress sloshing motions significantly when properly designed and by selecting the appropriate porosity(${\approx}0.1$) and submergence depth.

사각형 탱크 내에서의 2차원 슬로싱에 대한 전산유체 역학적 연구 (Computational Fluid Dynamics Study on Two-Dimensional Sloshing in Rectangular Tank)

  • 곽영균;고성호
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1142-1149
    • /
    • 2003
  • The present study describes a numerical analysis for simulation of the sloshing of flows with free-surface which contained in a rectangular tank moving in harmonic or pitching motion. The VOF function, representing the volume fraction of a cell occupied by the fluid, is calculated for each cells, which gives the location of the free-surface filling any some fraction of cells with fluid. The time-dependent changes of free-surface height are used for visualization subject to several conditions such as fluid height, horizontal acceleration, sinusoidal motion, and viscosity. The free-surface heights were used for comparing wall-force, which is caused by sloshing of flows. Damping effects by baffles were extensively investigated for various conditions in terms of baffle shape and position.

투과성 내부재가 설치된 사각형 탱크내의 슬로싱 해석 (Sloshing Analysis in Rectangular Tank with Porous Baffle)

  • 조일형
    • 한국해양공학회지
    • /
    • 제29권1호
    • /
    • pp.1-8
    • /
    • 2015
  • An analytical model of liquid sloshing is developed to consider the energy-loss effect through a partially submerged porous baffle in a horizontally oscillating rectangular tank. The nonlinear boundary condition at the porous baffle is derived to accurately capture both the added inertia effects and the energy-loss effects from an equivalent non-linear drag law. Using the eigenfunction expansion method, the horizontal hydrodynamic force (added mass, damping coefficient) on both the wall and baffle induced by the fluid motion is assessed for various combinations of porosity, submergence depth, and the tank's motion amplitude. It is found that a negative value for the added mass and a sharp peak in the damping curve occur near the resonant frequencies. In particular, the hydrodynamic force and free surface amplitude can be largely reduced by installing the proper porous baffle in a tank. The optimal porosity of a porous baffle is near P=0.1.

사각형 연료탱크 내 슬로싱 주파수 응답 해석 (Analysis of Sloshing Frequency Response in Rectangular Fuel-Storage Tank)

  • 조진래;이홍우;하세윤;박태학;이우용
    • 한국전산구조공학회논문집
    • /
    • 제16권1호
    • /
    • pp.95-104
    • /
    • 2003
  • 본 논문은 사각형 연료 탱크 내 비점성, 비압축성, 비회전 유동에 대한 슬로싱 주파수 응답의 유한요소 해석을 다룬다. 지배방정식으로 포텐셜 이론을 기반으로 한 라플라스 방정식을 적용한다. 슬로싱 운동이 작다고 가정하여 선형화된 자유표면 조건을 적용하였고, 변수분리기법을 이용하여 이론해를 구하였다. 점성 감쇠에 따른- 에너지 소산의 영향을 구현하기 위해 가상치 점성 계수를 도입하였으며, 이고 인해 공진 주파수에서 응답의 발산을 방지할 수 있나. 슬로싱 응답의 최대 진폭을 예측하기 위해 9절점 요소를 사용한 유한요소법을 이용하여 해석하였다. 슬로싱 높이, 유체 내부 동수압 및 내부 유체력의 수치 결과는 이론해와 잘 일치하였다. 유한요소 시험 프로그램을 검증한 후, 유체높이에 따른 슬로싱 주파수 응답 특성을 분석하였다.