• Title/Summary/Keyword: Slopping land

Search Result 2, Processing Time 0.015 seconds

Selection Indices to Identify Drought-tolerance and Growth Characteristics of the Selected Korean Native Plants (자생식물로부터 내건성 식물의 최적인자 선발과 생육특성)

  • Im, Hyeon Jeong;Song, Hyeon Jin;Jeong, Mi Jin;Seo, Yeong Rong;Kim, Hak Gon;Park, Dong Jin;Yang, Woo Hyung;Kim, Yong Duck;Choi, Myung Suk
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.73-82
    • /
    • 2016
  • Best drought tolerance index was determined through statistics analysis and growth appearance of drought tolerant plants was determined by cultivation in pot and sloping land. For determination of best drought tolerant indicators, RD(Resistant dry days), LD(Leaf area), UTR(Unit transpiration), RWC(Relative water content), RWL(Relative water loss), LA(Leaf area), SN(Stoma unmber) and SA(Stoma area) were carried out by correlation and PCA analysis. RWL and UTR were affected on plant drought tolerance according to comparison among six indices for resistant dry days. The PCs axes separated SA, LA, RD and RWC and SN. UTR was negatively correlated with SA, RWL were also negatively correlated with RWC and SN. RWL and UTR were proved best selection indicator for the selection of drought tolerant species. Ulmus parvifolia, Bidens bipinnata, Patrinia villosa, Kummerowia striata, Arundinella hirta, Artemisia gmelini etc. were selected drought tolerant plants. Shoot growth appearance of drought resistant plants was differed pot and sloping land. Shoot growth and leaf number was no significant differences between the pot and sloping land. However, root growth of drought tolerant plants was all the difference between two cultivation. T/R ratio of drought tolerant plants was also found a big difference. T/R ratio of drought tolerant plants in sloping land was lower than that of pot. These results will be served efficiently plant breeding.

Evaluation of Drainage Improvement Effect Using Geostatistical Analysis in Poorly Drained Sloping Paddy Soil (경사지 배수불량 논에서 배수개선 효과의 지구통계적 기법을 이용한 평가)

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Ki-Do;Park, Chang-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.804-811
    • /
    • 2010
  • The lower portion of sloping paddy fields normally contains excessive moisture and the higher water table caused by the inflow of ground water from the upper part of the field resulting in non-uniform water content distribution. Four drainage methods namely Open Ditch, Vinyl Barrier, Pipe Drainage and Tube Bundle for multiple land use were installed within 1-m position from the lower edge of the upper embankment of sloping alluvial paddy fields. Knowledge of the spatial variability of soil water properties is of primary importance for management of agricultural lands. This study was conducted to evaluate the effect of drainage in the soil on spatial variability of soil water content using the geostatistical analysis. The soil water content was collected by a TDR (Time Domain Reflectometry) sensor after the installation of subsurface drainage on regular square grid of 80 m at 20 m paddy field located at Oesan-ri, Buk-myeon, Changwon-si in alluvial slopping paddy fields ($35^{\circ}22^{\prime}$ N, $128^{\circ}35^{\prime}$). In order to obtain the most accurate field information, the sampling grid was divided 3 m by 3 m unit mesh by four drainage types. The results showed that spatial variance of soil water content by subsurface drainage was reduced, though yield of soybean showed the same trends. Value of "sill" of soil water content with semivariogram was 9.7 in Pipe Drainage, 86.2 in Open Ditch, and 66.8 in Vinyl Barrier and 15.7 in Tube Bundle.