• Title/Summary/Keyword: Slope-Area Plot

Search Result 59, Processing Time 0.04 seconds

Molecular Theory of Plastic Deformation (Ⅲ)$^*$

  • Kim, Jae-Hyun;Ree, Tai-Kyue;Kim, Chang-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.3
    • /
    • pp.96-104
    • /
    • 1981
  • (1) The flow data of f (stress) and ${\dot{s}$ (strain rate) for Fe and Ti alloys were plotted in the form of f vs. -ln ${\dot{s}$ by using the literature values. (2) The plot showed two distinct patterns A and B; Pattern A is a straight line with a negative slope, and Pattern B is a curve of concave upward. (3) According to Kim and Ree's generalized theory of plastic deformation, pattern A & B belong to Case 1 and 2, respectively; in Case 1, only one kind of flow units acts in the deformation, and in Case 2, two kinds flow units act, and stress is expressed by $f={X_1f_1}+{X_2f_2}$where $f_1\;and\;f_2$ are the stresses acting on the flow units of kind 1 and 2, respectively, and $X_1,\;X_2$ are the fractions of the surface area occupied by the two kinds of flow units; $f_j=(1/{\alpha}_j) sinh^{-1}\;{\beta}_j{{\dot{s}}\;(j=1\;or\;2)$, where $1/{\alpha}_j\;and\;{\beta}_j$ are proportional to the shear modulus and relaxation time, respectively. (4) We found that grain-boundary flow units only act in the deformation of Fe and Ti alloys whereas dislocation flow units do not show any appreciable contribution. (5) The deformations of Fe and Ti alloys belong generally to pattern A (Case 1) and B (Case 2), respectively. (6) By applying the equations, f=$(1/{\alpha}_{g1}) sinh^-1({\beta}_{g1}{\dot{s}}$) and $f=(X_{g1}/{\alpha}_{g1})sinh^{-1}({\beta}_{g1}{\dot{s}})+ (X_{g2}/{\alpha}_{g2})\;shih^{-1}({\beta}_{g2}{\dot{s}})$ to the flow data of Fe and Ti alloys, the parametric values of $x_{gj}/{\alpha}_{gj}\;and\;{\beta}_{gs}(j=1\;or\;2)$ were determined, here the subscript g signifies a grain-boundary flow unit. (7) From the values of ($({\beta}_gj)^{-1}$) at different temperatures, the activation enthalpy ${\Delta}H_{gj}^{\neq}$ of deformation due to flow unit gj was determined, ($({\beta}_gj)^{-1}$) being proportional to , the jumping frequency (the rate constant) of flow unit gj. The ${\Delta}H_{gj}\;^{\neq}$ agreed very well with ${\Delta}H_{gj}\;^{\neq}$ (self-diff) of the element j whose diffusion in the sample is a critical step for the deformation as proposed by Kim-Ree's theory (Refer to Tables 3 and 4). (8) The fact, ${\Delta}H_{gj}\;^{\neq}={\Delta}H_{j}\;^{\neq}$ (self-diff), justifies the Kim-Ree theory and their method for determining activation enthalpies for deformation. (9) A linear relation between ${\beta}^{-1}$ and carbon content [C] in hot-rolled steel was observed, i.e., In ${\beta}^{-1}$ = -50.2 [C] - 40.3. This equation explains very well the experimental facts observed with regard to the deformation of hot-rolled steel..

Geochemistry and Petrogenesis of the Granitic Rocks in the Vicinity of the Mt. Sorak (설악산 부근의 화강암류에 대한 지구화학 및 성인)

  • Kyoung-Won Min;Sung-Bum Kim
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.35-51
    • /
    • 1996
  • The granitic rocks in the vicinity of the Mt. Sorak, the northeastern part of the NE-SW elongated Mesozoic granitic batholith in the Kyeonggi massif, consist of granodiorite, biotite granite, two-mica granite and alkali feldspar granite. Variations In major and most trace elemental abundances show a typical differentiation trend in a granitic magma. Granitic rocks all display a calc-alkaline trend in the AFM diagram. Also, In the ACF diagram discriminating between I- and S-type granitic rocks, granodiorite and most biotite granite in the southeastern area represent I-type and magnetite-series characteristics, while most biotire granite and two-mica granite in the northwestern area exhibit S-type and ilmenite-series ones.According to recent studies of the granitle rocks In the Inje-Hongcheon district. all ihe granitic rocks distributed in the northeastern part of the Kyeonggi massif have been classified as late Triassic to early Jurassic Daebo granite. With reference of the formerly published ages, an age oi $125.6{\pm}4.4$ Ma calculated by the slope in the plot of $^{87}Rb/^{86}Sr-^{87}Sr/^{86}Sr$ for the biotite granite samples from the southeastern area is inferred as an emplacement age for the granitic rocks in the vicinity of the Mt. Sorak. On the basis of elemental variations and Sr isotope compositions, an possible evolutional process for the granitic magmas in this area is suggested. The primary magma of I-type and magnetite-series generated about 125 Ma by partial melting of igneous originated crustal materials, might be emplaced and evolved through fractional crystallization, convection and assimilation of the surrounding Precambrian metasediments to become S-type and ilmenlte-serles in the outer area, and then solidified to granodiorite, biotite granite and two-mica granite.At the latest stage, the evolved hydrothermal solution altered the formerly solidified biotite granite to alkali feldspar granite and probably later local igneous activities affected the alkali feldspar granite again.

  • PDF

Assessment of Soil Aggregates and Erodibility Under Different Management Practices in the Mountainous Soils (산지에서 영농방법에 따른 토양입단과 침식성 평가)

  • Joo, Jin-Ho;Yang, Jae-E;Kim, Jeong-Je;Jung, Yeong-Sang;Choi, Joong-Dae;Yun, Sei-Young;Ryu, Kwan-Shig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • Soil erosion in the hilly and mountainous uplands in the Daekwanryong area, Kangwon-Do, were investigated through a field plot experiment. The plot size was 15m long and 2.5m wide with the average slope of 12.5 percents. Soil erodibility factor (K), surface coverage (SC), soil aggregate percentage and wind erodibility (I) were evaluated in the mountainous soils under different management practices for corn and potato cultivations. Soil erodibility factor (K) was greater in upper part than in lower part of the plots. Surface coverage (SC) values ranged from 0.01 to 0.84 depending on the amounts of crop residues. Soils having a greater crop residue in surface were less subjected to soil erosion. SC values after corn harvest were 0.4 to 0.8, while those after potato harvest were 0.4 to 0.5, indicating potato might be better than corn for erosion control. Soil aggregate percentages of the experimental plots ranged from 49.7 to 79.8%. Those were higher in potato-cultivated plots with higher surface coverage, organic fertilizer treatment and contour tillage. Soil aggregate percentage of potato-cultivated plots was significantly correlated to crop residue coverage after harvest. The dried soil aggregate percentage, showing the ranges of 26.4 to 56.4%, were higher in the plots with the increased crop residue incorporation. Wind erodibility (I) of the soil was decreased with increasing surface coverage. When soil had 26.4% of the dried aggregate percentage, wind erodibility was estimated to be $183Mgha^{-1}$ which was equivalent to soil loss of $0.5Mg\ha^{-1}day^{-1}$.

  • PDF

Effects of Soil Hardness on the Root Distribution of Pinus rigida Mill. Planted in Association with Sodding Works on the Denuded Land (사방시공지(砂防施工地)에 있어서 리기다소나무의 수근(樹根)의 분포(分布)에 미치는 토양견밀도(土壤堅密度)의 영향(影響))

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.56 no.1
    • /
    • pp.66-76
    • /
    • 1982
  • Soil harness represents such physical properties as porosity, amount of water, bulk density and soil texture. It is very important to know the mechanical properties of soil as well as the chemical in order to research the fundamental phenomena in the growth and the distribution of tree roots. The writer intended to grip soil hardness by soil layer and also to grasp the root distribution and the correlation between soil hardness and the root distribution of Pinus riguda Mill. planted on the denuded hillside with sooding works by soil layer on soil profile. The site investigated is situated at Peongchang-ri 13, Kocksung county, Chon-nam Province. The area is consisted of 3.63 ha having on elevation of 167.5-207.5 m. Soil texture is sandy loam and parant rock in granite. Average slope of the area is $17^{\circ}-30^{\circ}$. Soil moisture condition is dry. Main exposure of the area is NW or SW. The total number of plots investigated was 24 plots. It divided into two groups by direction each 12 plots in NW and SW and divided into three groups by the position of mountain plots in foot of mountain, in hillside, and in summit of mountain, respectively. Each sampling tree was selected as specimen by purposive sampling and soil profile was made at the downward distance of 50cm form the sampling tree at each plot. Soil hardness, soil layer surveying, root distribution of the tree and vegetation were measured and investigated at the each plot. The soil hardness measured by the Yamanaka Soil Hardness Tester in mm unit. the results are as follows: 1) Soil hardness increases gradually in conformity with the increment of soil depth. The average soil indicator hardness by soil layer are as follows: 14.6mm in I - soil layer (0-10cm in depth from soil surface), 16.2mm in II - soil layer (10-20cm), 17.2 in III - soil layer (20-30cm), 18.3mm in IV - soil layer(30-40cm), 19.8mm in V - soil layer (4.50mm). 2) The tree roots (less than 20mm in diameter) distribute more in the surface layer than in the subsoil layer and decrease gradually according to the increment of soil depth. The ratio of the root distribution can be illustrated by comparing with each of five soil layers from surface to subsoil layer as follows: I - soil layer; 31%, II - soil layer; 26%, III - soil layer; 18%, IV - soil layer; 12%, V - soil layer; 13%, 3) Soil hardness and tree root distribution (less than 20mm in diameter) of Pinus rigida Mill. correlate negatively each other; the more soil hardness increases, the most root distribution decreases. The correlation coefficients between soil hardness and distribution of tree roots by soil layer are as follows: I - soil layer; -0.3675 (at the 10% significance level), II - soil layer; -0.5299 (at the 1% significance level), III - soil layer; -0.5573 (at the 2% significance level), IV - soil layer; -0.6922 (at the 5% significance level), V - soil layer; -0.7325 (at the 2% significance level). 4) the most suitable range of soil hardness for the growth of Pinus rigida Mill is the range of 12-14.9mm in soil indicator hardness. In this range of soil indicator hardness, the root distribution of this tree amounts to 41.8% in spite of 33% in soil harness and under the 20.9mm of soil indicator hardness, the distribution amounts to 93.2% in spite of 82% in soil hardness. Judging from above facts, the roots of Pinus rigida can easily grow within the soil condition of 20.9mm in soil indicator hardness. 5) The soil layers are classified by their depths from the surface soil.

  • PDF

The Analysis of Successional Trends by Topographic Positions in the Natural Deciduous Forest of Mt. Chumbong (점봉산(點鳳産) 일대 천연활엽수림(天然闊葉樹林)의 지형적(地形的) 위치(位置)에 따른 천이(遷移) 경향(傾向) 분석(分析))

  • Lee, Won Sup;Kim, Ji Hong;Jin, Guang Ze
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.5
    • /
    • pp.655-665
    • /
    • 2000
  • Taking account of the structural variation on species composition by topography, the successional trends were comparatively analyzed for the three topographic positions (valley, mid-slope, and ridge) in the natural deciduous forest of Mt. Chumbong area. The analysis was based upon the subsequent process of generation replacement by understory saplings and seedlings over the overstory trees which will be eventually fallen down. This study adopted the plot sampling method, establishing twenty $20m{\times}20m$ quadrats and collecting vegetation and site data on each different topographic position. The transition matrix model, which was modified from the mathematical theory of Markov chain, was employed to analyze the successional trends and thereafter to predict the overstory species composition in the future for each different topographic position. In valley, the simulation indicated the remarkable decrease in the proportion of species composition of present dominants Quercus mongolica and Fraxinus mandshurica from current 23% and 21% to around 4% of each at the steady state, which is predicted to take less than 200 years. On the other hand, the proportion of such species as Abies holophylla, Acer mono, Tilia amurensis, and Ulmus laciniata will increase at the steady state. In mid-slope, the result showed the remarkable decrease in the proportion of Juglans mandshurica, Kalopanax pictus, and Tilia amurensis from current 15%, 8%, and 15% to 2%, 1%, and 5%, respectively, at steady state predicted to take more than 250 years. In ridge, the current dominant Quercus mongolica was predicted to be decreased dramatically from 58% to 8% at steady state which could be achieved about 200 years. On the contrary, the proportion of Acer mono and Tilia amurensis will be increased from current 4% and 3% to more than 20% and 40%, respectively, at the steady state. Overall results suggested that the study forest is more likely seral rather than climax community. Even though a lot of variation is inevitable due to various kinds of site and vegetation development, the study forest is considered to be more than 200 years away from the steady state or climax in terms of overstory species composition.

  • PDF

Characteristics of Soil Water Runoff and Percolation in Sloped Land with Different Soil Textures (경사지 토양에서 강우량과 토성에 따른 물 유출 및 침투 특성)

  • Lee, Hyun-Haeng;Ha, Sang-Keon;Hur, Seung-Oh;Jung, Kang-Ho;Kim, Won-Tae;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.268-273
    • /
    • 2006
  • Soil loss induced by erosion has come to be a serious problem in Korea's sloped land since more than 70% of upland fields are located on the sloped land area. The purpose of this study was to investigate the phase of water flow in differently soil textured plot soil types by rainfall amount. Lysimeters with slope of 15%, 5 m in length, 2 m in width, and 1 m in depth were prepared and filled up with three different soil textures, such as sandy loam, loam, and clay loam, then relationships between seasonal rainfall and runoff, percolation were analyzed. Runoff and percolation rate were shown to increase linearly with increasing rainfall intensity in all the soil textures, but the starting threshold and increment rate in runoff and percolation occurrence were dependent differently upon soil textures. Percolation increment rate according to the increasing rainfall amount was 0.52, 0.36, and 0.57 for sandy loam, loam and clay loam soil respectively. The threshold rainfall amounts in which percolation occurs were 5.73 mm, 6.80 mm, and 12.86 mm for sandy loam, loam and clay loam respectively. Runoff increment rates were 0.42, 0.48 and 0.46 for sandy loam, loam and clay loam soil. The threshold rainfall amount in which runoff occurs was 10.50 mm in sandy loam, 7.76 mm in loam and 17.40 mm in clay loam. These different phases of water flow by soil texture could be used to suggest guidelines for the best management practice of the farming slope land.

Geochemistry of Granites in the Southern Gimcheon Area of Korea (김천남부에 분포하는 화강암류의 지구화학)

  • 윤현수;홍세선
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.16-31
    • /
    • 2003
  • The granites in the southern Gimcheon area can be divided into two parts, marginal hornblende biotite granodiorite (Mgd) and central biotite granodiorite to granite (Cgd). Mgd and Cgd are gray in color and display gradational contact relations and are mainly composed of coarse-grained and medium-grained rocks, respectively. Mgd has more frequent and larger mafic enclaves than Cgd, and the two granites partly show parallel foliation at thire contact with gneisses. From representative samples of the granites, K-Ar biotite ages of 197∼207 Ma were obtained. Considering the blocking temperature of biotite, it is suggested that the emplacement age of the granitic magma was probably late Triassic. The anorthite contents of plagioclases in Mgd display less variation than those of Cgd, indicating that Mgd crystallized within a narrow range of temperatures. In the Al$\_$total/-Mg diagram, the biotites from the granites plot within the subalkaline field, and the smooth slope indicates differentiation from a single magma. All amphiboles from the granites belong to magnesio-hornblende. The linear trends of major oxides, AFM and Ba-Sr-Rb indicate that Mgd and Cgd were fractionally differentiated from a single granitic magma body crystallizing from the margin inwards. The relations of modal (Qz+Af) vs. Op, K$_2$O vs. Na$_2$O, Fe$_2$ $O_3$ vs. FeO, Fe$\^$+3/(Fe$\^$+3/+Fe$\^$+2/) and K/Rb vs. Rb/Sr show that they belong to I-type and magnetite-series granitic rocks developed by the progressive melting products of fixed sources. REE data, normalized to chondrite value, have trends of enriched LREE and depleted HREE together with weakly negative Eu anomalies.

Assessment of Nutrient Losses in Different Slope Highland Soils Amended with Livestock Manure Compost (경사도와 축분 부산물비료 시용에 따른 고랭지 밭의 양분 유실량)

  • Joo, Jin-Ho;Lee, Seung-Been
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.361-367
    • /
    • 2011
  • Soil fertility of alpine soils in Gangwon-Do has been deteriorating because of heavy input of chemical fertilizers for intensive crop production. To reduce application of chemical fertilizers, use of livestock manure compost in alpine soils increases consistently. Soil loss and runoff due to heavy rainfall in alpine area cause nutrient loss from soil, and subsequently pollute stream water. Therefore, the objective of this study was to assess nutrient efficiency and loss in Chinese cabbage cultivated soil with different livestock manure composts in several slopes. As control, chemical fertilizer was applied at the rate of $250-78-168kg\;ha^{-1}$ for $N-P_2O_5-K_2O$. Each pig-and chicken manure compost was applied at the rate of $10MT\;ha^{-1}$. Chemical fertilizer + chicken manure compost was applied as same rate. Four treatments was practiced in 5, 20, and 35% filed slopes, respectively. We monitored the amounts of soil loss and runoff water after rainfalls, and we also analyzed the contents of nutrients in soil and runoff water through lysimeter installed in alpine agricultural institute in Gangwon-Do. T-N loss due to soil loss was much greater with increasing filed slops rather than different fertilizer treatments. T-N loss has positive relationship with field slopes, which showing soil loss (MT/ha) = 1.66 slopes (%) - 3.5 ($r^2$ = 0.99). Available phosphate and exchangeable cations showed similar tendency with increasing slopes. T-N and T-P losses caused by runoff water were highest in chemical fertilizer (NPK) + chicken manure compost treated plot, while lowest in chemical fertilizer treatment. T-N contents (2.13, 1.95%) in chinese cabbage treated either pig and chicken manure composts compared to that (2.65%) of chemical fertilizer were significantly less. This could be resulted from much greater T-N loss in soil treated with pig and chicken manure composts.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF