• Title/Summary/Keyword: Slope stability chart

Search Result 16, Processing Time 0.024 seconds

The expanded LE Morgenstern-Price method for slope stability analysis based on a force-displacement coupled mode

  • Deng, Dong-ping;Lu, Kuan;Wen, Sha-sha;Li, Liang
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.313-325
    • /
    • 2020
  • Slope displacement and factor of safety (FOS) of a slope are two aspects that reflect the stability of a slope. However, the traditional limit equilibrium (LE) methods only give the result of the slope FOS and cannot be used to solve for the slope displacement. Therefore, developing a LE method to obtain the results of the slope FOS and slope displacement has significance for engineering applications. Based on a force-displacement coupled mode, this work expands the LE Morgenstern-Price (M-P) method. Except for the mechanical equilibrium conditions of a sliding body adopted in the traditional M-P method, the present method introduces a nonlinear model of the shear stress and shear displacement. Moreover, the energy equation satisfied by a sliding body under a small slope displacement is also applied. Therefore, the double solutions of the slope FOS and horizontal slope displacement are established. Furthermore, the flow chart for the expanded LE M-P method is given. By comparisons and analyses of slope examples, the present method has close results with previous research and numerical simulation methods, thus verifying the feasibility of the present method. Thereafter, from the parametric analysis, the following conclusions are obtained: (1) the shear displacement parameters of the soil affect the horizontal slope displacement but have little effect on the slope FOS; and (2) the curves of the horizontal slope displacement vs. the minimum slope FOS could be fitted by a hyperbolic model, which would be beneficial to obtain the horizontal slope displacement for the slope in the critical state.

Stability Analysis of Toppling Failure in Rock Slopes (암반사면의 전도파괴에 대한 안정해석)

  • 이명재;이인모
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.55-66
    • /
    • 1998
  • The purpose of this paper is to formulate and apply the stability analysis of toppling failure by considering the variation of discontinuity characteristics, slope geometry, and loading conditions. The stability condition on toppling failure of rock slope is mainly iuluenced by the dip angle $\alpha_B$ and H/t ratio. In order to check toppling failures in design, the stability charts composed of dip angle $\alpha_B$ versus H/t ratio have been constructed in the paper. In general, smaller dip angle $\alpha_B$ and smaller dip angle $\alpha_B$ and smaller H/T ratio give safer condition. The suggested curves change rapidly at the chitical point around the sone, H/t=4~6. The stable zone in stability charles becomes smaller due to step angle $\data$.

  • PDF

Probabilistic Failure-time Analysis of Soil Slope under Rainfall Infiltration by Numerical Analysis (수치해석에 의한 강우 침투 시 사면 파괴시간의 확률론적 해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.45-58
    • /
    • 2019
  • In this study, a stochastic analysis procedure based on numerical analysis was proposed to evaluate a kind of intensity-duration rainfall threshold for the initiation of slope failure due to rainfall infiltration. Fragility curves were generated as a function of rainfall intensity-duration from the results of probabilistic slope stability analysis by MCS considering the uncertainty of the soil shear strength, reflecting the results of infiltration analysis of rainfall over time. In the probabilistic analysis, slope stability analyses combined with the infiltration analysis of rainfall were performed to calculate the limit state function. Using the derived fragility curves, a chart showing the relationship between rainfall intensity and slope failure-time was developed. It is based on a probabilistic analysis considering the uncertainty of the soil properties. The proposed probabilistic failure distribution analysis could be beneficial for analyzing the time-dependent failure process of soil slopes due to rainfall infiltration, and for predicting when the slope failure should occur.

Development of an Evaluation Chart for Landslide Susceptibility using the AHP Analysis Method (AHP 분석기법을 이용한 급경사지재해 취약성 평가표 개발)

  • Chae, Byung-Gon;Cho, Yong-Chan;Song, Young-Suk;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.99-108
    • /
    • 2009
  • Since the preexisting evaluation methods of landslide susceptibility take somehow long time to determine the slope stability based on the field survey and laboratory analysis, there are several problems to acquire immediate evaluation results in the field. In order to overcome the previously mentioned problems and incorrect evaluation results induced by some subjective evaluation criteria and methods, this study tried to develop a method of landslide susceptibility by a quantitative and objective evaluation approach based on the field survey. Therefore, this study developed an evaluation chart for landslide susceptibility on natural terrain using the AHP analysis method to predict landslide hazards on the field sites. The AHP analysis was performed by a questionnaire to several specialists who understands mechanism and influential factors of landslide. Based on the questionnaire, weighting values of criteria and alternatives to influence landslide triggering were determined by the AHP analysis. According to the scoring results of the analysed weighting values, slope angle is the most significant factor. Permeability, water contents, porosity, lithology, and elevation have the significance to the landslide susceptibility in a descending order. Based on the assigned scores of each criterion and alternatives of the criteria, an evaluation chart for landslide susceptibility was suggested. The evaluation chart makes it possible for a geologist to evaluate landslide susceptibility with a total score summed up each alternative score.

Proposal of a Design Method of slope Reinforced by the Earth Retention System (활동억지시스템으로 보강된 사면의 설계법 제안)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 2008
  • In this study, the design method of slope reinforced by the earth retention systems were systematically developed, and the flow chart of design procedure fur each system were constructed to design the slope rationally. The proposed design method is composed of 5 steps such as field condition investigation step, slope design step, landslide occurrence prediction step, slope failure scale estimation step and reinforcement countermeasure selection step. The quantitative standard of slope failure scale was established based on the arrangement of various overseas standards which is estimating the slope failure, and the analysis of slope failure scale which is occurred in the country. The slope failure scale is classified into three categories the small scale of slope failure is less than $150m^3$ of slope failure volume, the middle scale of slope failure is from $150m^3$ to $900m^3$ and the large scale of slope failure is more than $900m^3$. The earth retention system could be selected by the proposed slope failure scale based on the slope failure volume. Meanwhile, the design methods of earth retention system such as piles, soil nails and anchors were developed. The optimal countermeasure for slope stability could be proposed using above design methods.

Assessment of Landslide Causal Factors Using ANN Method (ANN 기법을 이용한 사면 붕괴인자 평가)

  • Song, Young-Karb;Jung, Min-Su;Oh, Jeong-Rim;Cha, A-Reum
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.89-96
    • /
    • 2012
  • In this study landslide causal factors which are considered to have the same effect in assessment techniques are categorized and their impact on landslides is analyzed to acquire reasonable weighting factors in the landslide hazard. Results are compared to those of the Assessment Chart developed by National Institute for Disaster Prevention (NIDP) and the adequacy and proper portion for landslide causal factors are considered. The Artificial Neural Network (ANN) method applied to 28 landslide areas is incorporated to evaluate the reasonable rating. Results show that the following items in the Chart are necessary to modify their portions in order to implement the precise assessment results: 1) Estimated damage; 2) Tension crack; 3) Existence of valley.