• Title/Summary/Keyword: Slope recognition

Search Result 70, Processing Time 0.031 seconds

Characteristics of Cow´s Voices in Time and Frequency domains for Recognition

  • Ikeda, Yoshio;Ishii, Y.
    • Agricultural and Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.15-23
    • /
    • 2001
  • On the assumption that the voices of the cows are produced by the linear prediction filter, we characterized the cows’voices. The order of this filter was determined by examining the voice characteristics both in time and frequency domains. The proposed order of the linear prediction filter is 15 for modeling voice production of the cow. The characteristics of the amplitude envelope of the voice signal was investigated by analyzing the sequence of the short time variance both in time and frequency domains, and the new parameters were defined. One of the coefficients o the linear prediction filter generating the voice signal, the fundamental frequency, the slope of the straight line regressed from the log-log spectra of the short time variance and the coefficients of the linear prediction filter generating the sequence of the short time variance of the voice signal can differentiate the two cows.

  • PDF

Recognition System of Slope Condition Using Image and Laser Measuring Instrument (영상 및 레이저 계측기를 통한 경사면 상황인식 시스템)

  • Han, Sang-Hun;Han, Youngjoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.219-227
    • /
    • 2014
  • Natural disasters such as a ground collapse and a landslide have broken out due to the climate change of the Korea and the reckless expansion of cities and roads. The climate changes and the reckless urbanization have made the ground weak. Thus, it is important to keep a close eye on the highly weakened landslide and to prevent its natural disasters. In order to prevent these disasters, this paper presents a system of recognizing the road slide condition by measuring the displacements using laser scanner instrument. The previous system of monitoring the road slide has some problems as inaccurate recognition due to using only images from a camera, or expensive system such as artificial satellites and aircraft systems. To solve this problem, our proposed system uses the 3D range data from the laser scanner for measuring the accurate displacement of the road slide and optical flows from the Lucas-Kanade algorithm for recognizing the road slide in the image.

Development of Electrocardiogram Identification Algorithm using SVM classifier (SVM분류기를 이용한 심전도 개인인식 알고리즘 개발)

  • Lee, Sang-Joon;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.654-661
    • /
    • 2011
  • This paper is about a personal identification algorithm using an ECG that has been studied by a few researchers recently. Previously published algorithm can be classified as two methods. One is the method that analyzes of ECG features and the other is the morphological analysis of ECG. The main characteristic of proposed algorithm can be classified the method of analysis ECG features. Proposed algorithm adopts DSTW(Down Slope Trace Wave) for extracting ECG features, and applies SVM(Support Vector Machine) to training and testing as a classifier algorithm. We choose 18 ECG files from MIT-BIH Normal Sinus Rhythm Database for estimating of algorithm performance. The algorithm extracts 100 heartbeats from each ECG file, and use 40 heartbeats for training and 60 heartbeats for testing. The proposed algorithm shows clearly superior performance in all ECG data, amounting to 93.89% heartbeat recognition rate and 100% ECG recognition rate.

Recognition of Music using Backpropagation Network (Backpropagation Network을 이용한 악보 인식)

  • Park, Hyun-Jun;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.258-261
    • /
    • 2007
  • This paper presents techniques to recognize music using back propagation network, one of the neural network algorithms, and to preprocess technique for music image. Music symbols and music notes are segmented by preprocessing such as binarization, slope correction, staff line removing, etc. Segmented music symbols and music notes are recognized by music note recognizing network and non-music note recognizing network. We proved correctness of proposed music recognition algorithm through experiments and analysis with various kind of musics.

  • PDF

Signal Processing for Speech Recognition in Noisy Environment (잡음 환경에서 음성 인식을 위한 신호처리)

  • Kim, Weon-Goo;Lim, Yong-Hoon;Cha, Il-Whan;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.73-84
    • /
    • 1992
  • This paper studies noise subtraction methods and distance measures for speech recognition in a noisy environment, and investigates noise robustness of the distance measures applied to the problem of isolated word recognition in white Gaussian and colored noise (vehicle noise) environments. Noise subtraction methods which can be used as a pre-processor for the speech recognition system, such as the spectral subtraction method, autocorrelation subtraction method, adaptive noise cancellation and acoustic beamforming are studied, and distance measures such and Log Likelihood Ratio ($d_{LLR}$), cepstral distance measure ($d_{CEP}$), weighted cepstral distance measure ($d_{WCEP}$), spectral slope distance measure ($d_{RPS}$) and cepstral projection distance measure ($d_{CP},\;d_{BCP},\;d_{WCP},\;d_{BWCP}$) are also investigated. Testing of the distance measures for speaker-dependent isolated word recognition in a noisy environment indicate that $d_{RPS}\;and\;d_{WCEP}$ which weigh higher order cepstral coefficients more heavily give considerable performance improvement over $d_{CEP}and\;d_{LLR}$. In addition, when no pre-emphasis is performed, the recognizer can maintain higher performance under high noise conditions.

  • PDF

Object Recognition Method for Industrial Intelligent Robot (산업용 지능형 로봇의 물체 인식 방법)

  • Kim, Kye Kyung;Kang, Sang Seung;Kim, Joong Bae;Lee, Jae Yeon;Do, Hyun Min;Choi, Taeyong;Kyung, Jin Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.901-908
    • /
    • 2013
  • The introduction of industrial intelligent robot using vision sensor has been interested in automated factory. 2D and 3D vision sensors have used to recognize object and to estimate object pose, which is for packaging parts onto a complete whole. But it is not trivial task due to illumination and various types of objects. Object image has distorted due to illumination that has caused low reliability in recognition. In this paper, recognition method of complex shape object has been proposed. An accurate object region has detected from combined binary image, which has achieved using DoG filter and local adaptive binarization. The object has recognized using neural network, which is trained with sub-divided object class according to object type and rotation angle. Predefined shape model of object and maximal slope have used to estimate the pose of object. The performance has evaluated on ETRI database and recognition rate of 96% has obtained.

Object Recognition Using Hausdorff Distance and Image Matching Algorithm (Hausdorff Distance와 이미지정합 알고리듬을 이용한 물체인식)

  • Kim, Dong-Gi;Lee, Wan-Jae;Gang, Lee-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.841-849
    • /
    • 2001
  • The pixel information of the object was obtained sequentially and pixels were clustered to a label by the line labeling method. Feature points were determined by finding the slope for edge pixels after selecting the fixed number of edge pixels. The slope was estimated by the least square method to reduce the detection error. Once a matching point was determined by comparing the feature information of the object and the pattern, the parameters for translation, scaling and rotation were obtained by selecting the longer line of the two which passed through the matching point from left and right sides. Finally, modified Hausdorff Distance has been used to identify the similarity between the object and the given pattern. The multi-label method was developed for recognizing the patterns with more than one label, which performs the modified Hausdorff Distance twice. Experiments have been performed to verify the performance of the proposed algorithm and method for simple target image, complex target image, simple pattern, and complex pattern as well as the partially hidden object. It was proved via experiments that the proposed image matching algorithm for recognizing the object had a good performance of matching.

Application of 3D Chain Code for Object Recognition and Analysis (객체인식과 분석을 위한 3D 체인코드의 적용)

  • Park, So-Young;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.459-469
    • /
    • 2011
  • There are various factors for determining object shape, such as size, slope and its direction, curvature, length, surface, angles between lines or planes, distribution of the model key points, and so on. Most of the object description and recognition methods are for the 2D space not for the 3D object space where the objects actually exist. In this study, 3D chain code operator, which is basically extension of 2D chain code, was proposed for object description and analysis in 3D space. Results show that the sequence of the 3D chain codes could be basis of a top-down approach for object recognition and modeling. In addition, the proposed method could be applicable to segment point cloud data such as LiDAR data.

Personal Mobility Safety Helmet Device using Multi-Sensor and Arduino (다중센서 및 아두이노를 활용한 Personal Mobility 스마트헬멧)

  • Dae-Hyun Kim;Won-Young Yang;Dong-Wook Han;Ju-Min Ham;Boong-Joo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.723-730
    • /
    • 2023
  • Due to the recent development of battery technology, various types of means of transportation such as electric kickboards, Segways, and electric bicycles have emerged, which can be defined as Personal Mobility. In this paper, as the incidence of safety accidents increases due to the increase in the number of users of Personal Mobility, safety helmet devices that strengthen safety capabilities and peripheral recognition functions were studied. In order for the helmet to send a safety signal, Arduino was used as a base to set the value of the sensor according to changes in distance and angle using the ultrasonic sensor to minimize errors and ensure smooth recognition. In addition, a gyro sensor was used to turn on the direction indicator according to each slope. Using a CDS sensor, the LED is designed to turn on when it goes below 150 lux at night. Finally, it is possible to check whether a helmet is worn within 5cm, and when driving at an average speed, the direction indicator light is turned on at 10 degrees, and the LED is turned on at less than 150 lux.

Development of a Slope Condition Analysis System using IoT Sensors and AI Camera (IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발)

  • Seungjoo Lee;Kiyen Jeong;Taehoon Lee;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Recent abnormal climate conditions have increased the risk of slope collapses, which frequently result in significant loss of life and property due to the absence of early prediction and warning dissemination. In this paper, we develop a slope condition analysis system using IoT sensors and AI-based camera to assess the condition of slopes. To develop the system, we conducted hardware and firmware design for measurement sensors considering the ground conditions of slopes, designed AI-based image analysis algorithms, and developed prediction and warning solutions and systems. We aimed to minimize errors in sensor data through the integration of IoT sensor data and AI camera image analysis, ultimately enhancing the reliability of the data. Additionally, we evaluated the accuracy (reliability) by applying it to actual slopes. As a result, sensor measurement errors were maintained within 0.1°, and the data transmission rate exceeded 95%. Moreover, the AI-based image analysis system demonstrated nighttime partial recognition rates of over 99%, indicating excellent performance even in low-light conditions. Through this research, it is anticipated that the analysis of slope conditions and smart maintenance management in various fields of Social Overhead Capital (SOC) facilities can be applied.