• Title/Summary/Keyword: Slope failure

Search Result 810, Processing Time 0.026 seconds

Slope stability analysis and landslide hazard assessment in tunnel portal area (터널 갱구지역 사면안정성 및 산사태 위험도 평가)

  • Jeong, Hae-Geun;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.387-400
    • /
    • 2013
  • In this study, the slope stability analysis and the landslide hazard assessment in tunnel portal slope were carried out. First, we selected highly vulnerable areas to slope failure using the slope stability analysis and analyzed the slope failure scale. According to analyses results, high vulnerable area to slope failure is located at 485~495 m above sea level. The slope is stable in a dry condition, while it becomes unstable in rainfall condition. The analysis results of slope failure scale show that the depth of slope failure is maximum 2.1 m and the length of slope failure is 18.6 m toward the dip direction of slope. Second, we developed a 3-D simulation program to analyze characteristics of runout behavior of debris flow. The developed program was applied to highly vulnerable areas to slope failure. The result of 3-D simulation shows that debris flow moves toward the central part of the valley with the movement direction of landslide from the upper part to the lower part of the slope. 3-D simulation shows that debris flow moves down to the bottom of mountain slope with a speed of 7.74 m/s and may make damage to the tunnel portal directly after 10 seconds from slope failure.

Recommendation of I-D Criterion for Steep-Slope Failure Estimation Considering Rainfall Infiltration Mechanism (강우침투 메커니즘을 이용한 급경사지 붕괴예측 I-D 기준식 제안)

  • Song, Young-Karb;Kim, Young-Uk;Kim, Dong-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.65-74
    • /
    • 2013
  • The natural disaster occurrences and the loss of lives caused by the steep-slope failures in Korea were investigated in this study. The investigation includes the frequency rate of the steep-slope failures with respect to the characteristics of precipitation, underlying bedrock, and weathered soils. Analysis on the problems in the existing estimation methods of steep-slope failure was also undertaken, and a new model using unsaturated infinite slope stability was developed for the better slope failure estimation. The slope analyses by the newly developed model were performed considering unsaturated infinite slope, the gradient of slope, and hydro/mechanical properties of soils. Steep-slope failure estimation criterion is proposed based on the analysis results. In addition, the precipitation amount corresponding to warning stages against steep-slope failure is provided as an equation of Intensity-Duration criterion.

A Study on the Slope Stability near Military Facility in Rainfall (집중호우시 군사시설물이 설치된 사면의 안정성평가에 관한 연구)

  • Lee, Seung Ho;Hwang, Young Cheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.47-56
    • /
    • 2004
  • This research analyzed about various landslide causes and resettled items, which are fit to environment of army facilities, of safe estimating table of Korea Institute of Construction technology through the spot inspection data. Analyzed relation with rainfall and slope failure occurrence for forecast slope failure appearance. Analyzed special quality of rainfall, topography, geological features that become occurrence factor of slope failure that happen in Kang-Won area come up with use of slope failure safety estimating table. Wish to examine closely phenomenon of slope failure and regional special quality that appear in military bases area and consider countermeasure.

  • PDF

Effect of hydraulic distribution on the stability of a plane slide rock slope under the nonlinear Barton-Bandis failure criterion

  • Zhao, Lian-Heng;Cao, Jingyuan;Zhang, Yingbin;Luo, Qiang
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.391-414
    • /
    • 2015
  • In this paper, stabilities of a plane slide rock slope under different hydraulic distributions were studied based on the nonlinear Barton-Bandis (B-B) failure criterion. The influence of various parameters on the stability of rock slopes was analyzed. Parametric analysis indicated that studying the factor of safety (FS) of planar slide rock slopes using the B-B failure criterion is both simple and effective and that the effects of the basic friction angle of the joint (${\varphi}_b$), the joint roughness coefficient (JRC), and the joint compressive strength (JCS) on the FS of a planar slide rock slope are significant. Qualitatively, the influence of the JCS on the FS of a slope is small, whereas the influences of the ${\varphi}_b$ and the JRC are significant. The FS of the rock slope decreases as the water in a tension crack becomes deeper. This trend is more significant when the flow outlet is blocked, a situation that is particularly prevalent in regions with permafrost or seasonal frozen soil. Finally, the work is extended to study the reliability of the slope against plane failure according to the uncertainty from physical and mechanics parameters.

Cause of Rall Road Slope Failure and Determination of Soil Strength for Remedy (철도사면파괴 원인 및 대책공법 적용을 위한 강도정수 결정)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.3 s.14
    • /
    • pp.25-31
    • /
    • 2004
  • Rail road slope can be fatted because of existence of unexpected soft subsoil. Purpose of this study is verifying the cause of rail road slope failure and determination of soil strength for remedy. Drilling some boreholes, cone penetration test and field vane test were executed in order to find out the cause of slope failure. In addition, laboratory test was conducted in order to determine soil strength of soft soil sampled as undisturbed state. As a result of both the in-situ and the laboratory tests, the cause of slope failure is thought to be propagation of failure zone by progressive rupture of overconsolidated clay Soft soil strength was determined through back analysis of the failed slope.

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.187-195
    • /
    • 2023
  • Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

Failure Types in Rock Slopes According to Geological Characteristics (지질특성에 따른 암반사면 붕괴유형연구)

  • 정형식;유병옥
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.37-50
    • /
    • 1996
  • In this study, we collected data through the investigation of rock slopes of highway. By analyzing the collected data, the main factors of rock slope failure were studied. We studied on the failure types and scales according to rock types and geological structures in many rock slopes of highway. As a result, it was shown that many failed slopes were distributed in the areas of Cretaceous sedimentary rocks of south-eastern part in the Korean Peninsula and the Gneiss Complex in both Kyonggi-Do and Kangwon-Do. According to rock types, the following slope failure types were shown : that igneous rocks had the types of rock fall, plane failure, soil erosion and circular failure but had low failure frequency, and sedimentary rocks had predominantly the type of plane failure. Metamorphic rock showed the types of circular failure, wedge failure and plane failure due to poor rock qualities . According to geological structures, the following slope failure types were shown slope failure in igneous rocks was caused by joints, and in sedimentary rocks by bedding plane, and in metamorphic rocks by faults and poor rock qualities.

  • PDF

Investigation on Rock Slope Failure in Odong 2 area, Boeun-Gun (보은군 회북면 오동리 2지구 암반 절개면의 붕괴원인 고찰)

  • Koo, Ho-Bon;Baek, Yong;Kim, Gyu-Han;Rhee, Jong-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.535-542
    • /
    • 2000
  • The investigated cut-slope is located in Odong-Ri, Hoebuk-Myun, Boeun-Gun and composed of quartzite and phyllitic rocks (approximately 80 meters in length and 25 meters in height). During the investigation, the groundwater which was inferred to the natural pipe of slope was continuously flowing in the upper part of slope. The investigation for discontinuity properties in this area was carried out to decide the rock mass rating and strength parameters. To analyze the stability of cut-slope, lower equal-area hemisphere projection method was used. And laboratory test was done to evaluate engineering properties of soil which was sampled in the non-failure and failure area The inferred causes of cut-slope failure are the geometric relationship between the orientation of cut-slope and geological structures such as joints, faults which is distributed in the slope. And direct cause of failure is the increase of water content due to the heavy rainfall.

  • PDF

A Study on the Causes of Steep Slope Failure induced Heavy Rainfall (집중호우시 급경사지 붕괴발생 원인분석 연구)

  • Ryu, Ji Hyeob;Lim, Ik Hyen;Hwang, Eui Jin
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.1
    • /
    • pp.67-74
    • /
    • 2011
  • This paper was to examine the causes of steep slope failure during the season of heavy rainfall. For the purpose, the paper carefully analyzed the sites of steep slope failure, which happened in July 2009. The direct cause of steep slope failure was much related to heavy rainfall during summer. The paper continued to verify that additional causes include the malfunction of diverse waterways, the slope design without considering weathering soils and related characteristics, the lack of the waterway size, the intrusion of plant roots, the reinforced technique without considering slope conditions, etc.

  • PDF

Analysis of the buckling failure of bedding slope based on monitoring data - a model test study

  • Zhang, Qian;Hu, Jie;Gao, Yang;Du, Yanliang;Li, Liping;Liu, Hongliang;Sun, Shangqu
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.335-346
    • /
    • 2022
  • Buckling failure is a typical slope instability mode that should be paid more attention to. It is difficult to provide systematic guidance for the monitoring and management of such slopes due to unclear mechanism. Here we examine buckling failure as the potential instability mode for a slope above a railway tunnel in southwest China. A comprehensive model test system was developed that can be used to conduct buckling failure experiments. The displacement, stress, and strain of the slope were monitored to document the evolution of buckling failure during the experiment. Monitoring data reveal the deformation and stress characteristics of the slope with different slipping mass thicknesses and under different top loads. The test results show that the slipping mass is the main subject of the top load and is the key object of monitoring. Displacement and stress precede buckling failure, so maybe useful predictors of impending failure. However, the response of the stress variation is earlier than displacement variation during the failure process. It is also necessary to monitor the bedrock near the slip face because its stress evolution plays an important role in the early prediction of instability. The position near the slope foot is most prone to buckling failure, so it should be closely monitored.