• 제목/요약/키워드: Slope Factors

검색결과 1,212건 처리시간 0.034초

지진시 비탈면의 영구변위 발생에 따른 응답특성 분석 (Analysis of Response Characteristics According to Permanent Displacement in Seismic Slope)

  • 안재광;박상기;김우석;손수원
    • 한국지반공학회논문집
    • /
    • 제35권12호
    • /
    • pp.135-145
    • /
    • 2019
  • 비탈면 붕괴는 크게 내적요인과 외적요인으로 분류할 수 있다. 내적요인은 토층 깊이, 사면경사, 흙의 전단강도 등의 기존에 비탈면의 형성과 함께 내재 되어있는 공학적 요인이며, 외적요인은 지진과 같은 하중이다. 이때 최대가속도(PGA), 최대속도(PGV), Arias계수(I), 고유주기(Tp), 스펙트럼 가속도(SaT=1.0) 등은 지진의 외적요인으로 대변되는 값이다. 특히, 최대지반가속도(peak ground acceleration, PGA)는 지진의 지반 운동 크기를 정의하는 가장 대표적인 값이지만 동일한 최대 지반가속도 값을 가지는 진동이라도 지진의 지속시간에 따라 달라지는 사면에서의 변위를 충분히 고려하지 못하는 단점을 가지고 있다. 본 연구에서는 인공사면을 대상으로 2차원 평면변형률 조건의 수치해석을 수행하였으며, 다양한 지진 시나리오의 PGA를 0.2g로 스케일링하여 적용했을 때 비탈면에서 발생하는 응답특성을 분석하였다. 분석 결과, 비탈면의 상층부와 하층부의 응답은 활동면 발생 여부에 따라 차이를 보이며, 입력 지진파의 외적요인 보다는 소성변형을 유발시킨 진동 특성의 영향을 받는 것으로 나타났다.

능선환경으로 본 아산 용두천 유역 및 주변 지역에 있어서 청동기시대 취락의 최적 입지환경 (The Optimal Location Environment of the Bronze Age Settlement in Yongdu Stream and its Surrounding Area in Asan through the Ridge Environment's Perspective)

  • 박지훈;이애진
    • 한국지형학회지
    • /
    • 제27권4호
    • /
    • pp.89-112
    • /
    • 2020
  • The purpose of this study is as follows: First, we restore the optimal topographical environment of the Bronze Age settlements in the Yongdu Stream and its surrounding area in Asan City. Second, we reveal the relative importance of the topographical factors that the Bronze Age people considered when selecting their dwelling locations. We compared and analyzed topographical factors (ridge scale, ridge direction, slope direction of the ridge, micro-landform of the ridge, position of the ridge) from the ridge's environmental perspective of 123 Bronze Age dwellings (hereinafter referred to as dwellings) found in the survey area for that purpose. The results are as follows: First, from a macro perspective, the optimal topographical environment for the location of the Bronze Age settlement is the second ridge that have the E-W direction. And from a micro perspective, it is the southeast direction slope of the Crest slope at the summit. Second, it appears that the Bronze Age people have taken important consideration in determining the location of their dwelling in the following order: ① position (eg. summit), ② micro-landform (eg. Crest slope, Upper slope), ③ slope direction (eg. southward, South, Southeast), ④ scale (eg. sub-ridge, secondary, tertiary), ⑤ direction (eg. E-W, NNE-SSE).

억지말뚝-사면의 상호작용을 고려한 사면안전율 분석 (Stability Analysis of Pile/Slope Systems Considering Pile-slope Interaction)

  • 김병철;유광호;정상섬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.513-520
    • /
    • 2003
  • A numerical comparison or predictions by limit equilibrium analysis and 3n analysis is presented for slope/pile system. Special attention is given to the coupled analysis based on the explicit-finite-difference code, FLAC. To this end, an internal routine (FISH) was developed to calculate a factor of safety for a pile-reinforced slope according to shear strength reduction technique. The case of coupled analyses was performed for stabilizing piles in slope in which the pile response and slope stability are considered simultaneously and subsequently the factors of safety are compared to uncoupled analysis (limit equilibrium analysis) solution for a homogeneous slope. Based on a limited parametric study, it is shown that in the free-head condition the factor of safety in slope is more conservative for a coupled analysis than for an uncoupled analysis and a definitely larger value represents when piles are installed in the middle of the slopes and are restrained in the pile head.

  • PDF

임도시공경과년수 및 물리적 인자에 따른 성토사면 선형의 변화 (Transformation of Forest Road Fill-slope Alignment by Elapsed Years and Physical Properties)

  • 최윤호;이준우;김명준
    • 한국환경복원기술학회지
    • /
    • 제3권2호
    • /
    • pp.47-52
    • /
    • 2000
  • This study was carried out to analyze the effects of elapsed years and physical properties on fill-slope alignment of forest road. For the study, 21 forest roads in Puy$\check{o}$-gun and Asan-shi of Chungchungnam-do were selected and fifteen factors that might influence on fill-slope alignment were analyzed. The major forms of alignment of the fill-slope in the time of construction were concave and compound. But, with the elapsed years, the concave and compound forms have decreased and linear and convex forms have increased. And fill-slope alignment was strongly related with fill-slope distance, fill-slope gradient and ground gradient among the physical properties.

  • PDF

절리가 심하게 발달된 암반사면의 최적 절취각 고찰 (A Study fo rthe determination of optimum cutangle for the heavily jointed rock slope)

  • 홍예성;조태진;한공창
    • 터널과지하공간
    • /
    • 제6권2호
    • /
    • pp.166-174
    • /
    • 1996
  • Stability of rock slope is greatly affected by the geometry and strength of discontinuities developed in the rock mass. In this study an analytical method which is capable of analyzing the effect of relative orientation between the discontinuities and the slope face on the safety of slope by assessing their vector components was used to evaluate the stability and the maximum cut-angle for the proposed slope design. The results of computerized vector analysis revealed that slope area under investigation might be divided into 3 sections of different face directions. The safety factors for benches in each 3 sections were calculated using the limit-equilibrium theory. Then, by utilizing the concept of probabilistic risk analysis, the susceptibility of entire slope failure was estimated. Based on the distribution of safety factor in each bench, the maximum cut angle of each section could be selected differently ot achieve the permanent stability of the entire slope.

  • PDF

대절토사면내 붕괴발생에 따른 안정성검토 사례연구 (A case study of slope failure for large cut-slope)

  • 이연희;신창건;김용수;한재희;최준일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.697-702
    • /
    • 2006
  • A counterplan of slope failure has to investigate about various and engineering safety factors. Especially, it is important that large cut-slope must examine rational and economic solution. In this case study, cut-slope failure caused by inflow of rainwater into alternate layers. Hereafter it is suggested that large cut-slope should consider analysis the cause for a decline of safety factor and the engineering character of corestone ground mass.

  • PDF

임도시공경과년수 및 물리적 특성이 임도사면의 식생 침입에 미치는 영향 (Influence of Elapsed Years and Physical Properties on Vegetation Invasion of Forest Road Slope)

  • 이준우;추갑철;최윤호
    • 한국환경복원기술학회지
    • /
    • 제5권1호
    • /
    • pp.28-34
    • /
    • 2002
  • This study was carried out to analyze the effects of elapsed years and physical properties on invaded vegetation of forest road slope. For the study, 8 forest roads in Asan-si of Chungcheongnam-do were selected and 15 factors that might influence on vegetation invasion were analyzed. In generally, vegetation coverage of slope have increased with the elapsed years. But invasion species have decreased in the cut-slope and increased in fill-slope. There was no significant correlation between rate of vegetation coverage and elapsed years, but rate of vegetation coverage was strongly related with slope aspect. And the species of invasion vegetation affected mostly by the elapsed years and slope aspect among the physical properties.

Partial safety factors for retaining walls and slopes: A reliability based approach

  • GuhaRay, Anasua;Baidya, Dilip Kumar
    • Geomechanics and Engineering
    • /
    • 제6권2호
    • /
    • pp.99-115
    • /
    • 2014
  • Uncertainties in design variables and design equations have a significant impact on the safety of geotechnical structures like retaining walls and slopes. This paper presents a possible framework for obtaining the partial safety factors based on reliability approach for different random variables affecting the stability of a reinforced concrete cantilever retaining wall and a slope under static loading conditions. Reliability analysis is carried out by Mean First Order Second Moment Method, Point Estimate Method, Monte Carlo Simulation and Response Surface Methodology. A target reliability index ${\beta}$ = 3 is set and partial safety factors for each random variable are calculated based on different coefficient of variations of the random variables. The study shows that although deterministic analysis reveals a safety factor greater than 1.5 which is considered to be safe in conventional approach, reliability analysis indicates quite high failure probability due to variation of soil properties. The results also reveal that a higher factor of safety is required for internal friction angle ${\varphi}$, while almost negligible values of safety factors are required for soil unit weight ${\gamma}$ in case of cantilever retaining wall and soil unit weight ${\gamma}$ and cohesion c in case of slope. Importance of partial safety factors is shown by analyzing two simple geotechnical structures. However, it can be applied for any complex system to achieve economization.

Assessment of geological hazards in landslide risk using the analysis process method

  • Peixi Guo;Seyyed Behnam Beheshti;Maryam Shokravi;Amir Behshad
    • Steel and Composite Structures
    • /
    • 제47권4호
    • /
    • pp.451-454
    • /
    • 2023
  • Landslides are one of the natural disasters that cause a lot of financial and human losses every year It will be all over the world. China, especially. The Mainland China can be divided into 12 zones, including 4 high susceptibility zones, 7 medium susceptibility zones and 1 low susceptibility zone, according to landslide proneness. Climate and physiography are always at risk of landslides. The purpose of this research is to prepare a landslide hazard map using the Hierarchical Analysis Process method. In the GIS environment, it is in a part of China watershed. In order to prepare a landslide hazard map, first with Field studies, a distribution map of landslides in the area and then a map of factors affecting landslides were prepared. In the next stage, the factors are prioritized using expert opinion and hierarchical analysis process and nine factors including height, slope, slope direction, geological units, land use, distance from Waterway, distance from the road, distance from the fault and rainfall map were selected as effective factors. Then Landslide risk zoning in the region was done using the hierarchical analysis process model. The results showed that the three factors of geological units, distance from the road and slope are the most important have had an effect on the occurrence of landslides in the region, while the two factors of fault and rainfall have the least effect The landslide occurred in the region.

식물의 공학적 특성을 고려한 토사사면 보호공에서의 식생선정기법 연구 (A Study about the Engineering Properties of Vegetation, One of All Factors to Select Vegetation Species for Soil Slope Protection)

  • 유전용;김현태;강병윤;반창현;양영철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.459-466
    • /
    • 2002
  • This study reviews the engineering properties of vegetation as one of all factors to select vegetation species for slope protection. The vegetation species mainly applied in domestic soil slope protection were inspected, and the root properties such as root pattern, root length, root weight, were analyzed. And then direct shear tests on undisturbed fine sand including roots were performed to review the effect of root reinforcement. From these analyses, it was concluded that the engineering properties of vegetation should be considered to select vegetation species for slope protection.

  • PDF