• 제목/요약/키워드: Slip-layer

검색결과 131건 처리시간 0.025초

Bonding between high strength rebar and reactive powder concrete

  • Deng, Zong-Cai;Jumbe, R. Daud;Yuan, Chang-Xing
    • Computers and Concrete
    • /
    • 제13권3호
    • /
    • pp.411-421
    • /
    • 2014
  • A central pullout test was conducted to investigate the bonding properties between high strength rebar and reactive powder concrete (RPC), which covered ultimate pullout load, ultimate bonding stress, free end initial slip, free end slip at peak load, and load-slip curve characteristics. The effects of varying rebar buried length, thickness of protective layer and diameter of rebars on the bonding properties were studied, and how to determine the minimum thickness of protective layer and critical anchorage length was suggested according the test results. The results prove that: 1) Ultimate pull out load and free end initial slip load increases with increase in buried length, while ultimate bonding stress and slip corresponding to the peak load reduces. When buried length is increased from 3d to 4d(d is the diameter of rebar), after peak load, the load-slip curve descending segment declines faster, but later the load rises again exceeding the first peak load. When buried length reaches 5d, rebar pull fracture occurs. 2) As thickness of protective layer increases, the ultimate pull out load, ultimate bond stress, free end initial slip load and the slip corresponding to the peak load increase, and the descending section of the curve becomes gentle. The recommended minimum thickness of protective layer for plate type members should be the greater value between d and 10 mm, and for beams or columns the greater value between d and 15 mm. 3) Increasing the diameter of HRB500 rebars leads to a gentle slope in the descending segment of the pullout curve. 4) The bonding properties between high strength steel HRB500 and RPC is very good. The suggested buried length for test determining bonding strength between high strength rebars and RPC is 4d and a formula to calculate the critical anchorage length is established. The relationships between ultimate bonding stress and thickness of protective layer or the buried length was obtained.

점진원모델을 사용한 층상지반에서의 깊이에 따른 지반운동 특성 변화연구 (A Study on the Depth Dependent Characteristics of Earthquake Ground Motions in a Layered Ground Medium Using Point Source Models)

  • 고현무;김재관;권기준
    • 대한토목학회논문집
    • /
    • 제14권3호
    • /
    • pp.453-462
    • /
    • 1994
  • 다층 탄성반무한체에서 지진파장의 깊이에 따른 변화특성을 propagator matrix와 경사계단함수(ramp function) 형상의 단층이동함수(fault slip function)를 갖는 점진원 모델을 사용하여 연구하였다. 본 논문에서 지반은 수평방향으로 평행하고 각층에서는 재료특성이 균일한 지층으로 구성된 반무한체로서 모델링되었다. 각 층에서 지진운동의 지배편미분방정식의 해를 구하기 위해서 Fourier Hankel 변환기법이 적용되었다. 층상지반아래 반무한체에 있는 연직 dip-slip 및 주향이동(strike slip) 점진원에 의한 각층경계에서의 가속도와 변위의 시간이력과 주파수내용을 개발한 해석프로그램에 의하여 계산하였고 그 특성을 논의하였다.

  • PDF

나노인덴테이션 해석을 통한 Ag/Cu층에서 발생하는 Misfit 전위의 slip 특성에 대한 연구 (Nanoindentation on the Layered Ag/Cu for Investigating Slip of Misfit Dislocation)

  • 트란딘 롱;유용문;전성식
    • Composites Research
    • /
    • 제24권3호
    • /
    • pp.17-24
    • /
    • 2011
  • Ag/Cu층에서 발생하는 misfit 전위를 분석하기 위하여, EAM기법을 활용한 나노인덴테이션 해석을 수행하였다. N$\'{o}$se-Hoover 서모스텟 조건에 의거하여, 2-5nm 정도의 두께를 갖는 필름층에 구형 인덴터로 압입하였다. 해석결과는 misfit 전위에 대한 상대적인 압입위치가, 4nm이하의 필름에 대하여 영향을 미치는 것으로 나타났다. 전위에 의한 슬립 발생할 때 탄성에너지 변화는 Ag/Cu의 연화의 중요한 변수로 작용하며, 각각의 경우에 대하여 임계필름두께에 대해서도 고찰하였다.

분리층의 상대 변위를 이용한 고분자 미끄럼 촉각 센서 개발 (Development of Polymer Slip Tactile Sensor Using Relative Displacement of Separation Layer)

  • 김성준;최재영;문형필;최혁렬;구자춘
    • 로봇학회논문지
    • /
    • 제11권2호
    • /
    • pp.100-107
    • /
    • 2016
  • To realize a robot hand interacting like a human hand, there are many tactile sensors sensing normal force, shear force, torque, shape, roughness and temperature. This sensing signal is essential to manipulate object accurately with robot hand. In particular, slip sensors make manipulation more accurate and breakless to object. Up to now several slip sensors were developed and applied to robot hand. Many of them used complicate algorithm and signal processing with vibration data. In this paper, we developed novel principle slip sensor using separation layer. These two layers are moved from each other when slip occur. Developed sensor can sense slip signal by measuring this relative displacement between two layers. Also our principle makes slip signal decoupled from normal force and shear force without other sensors. The sensor was fabricated using the NBR(acrylo-nitrile butadiene rubber) and the Ecoflex as substrate and a paper as dielectric. To verify our sensor, slip experiment and normal force decoupling test were conducted.

Analytical solution of two-layer beam including interlayer slip and uplift

  • Kroflic, Ales;Planinc, Igor;Saje, Miran;Cas, Bojan
    • Structural Engineering and Mechanics
    • /
    • 제34권6호
    • /
    • pp.667-683
    • /
    • 2010
  • A mathematical model and its analytic solution for the analysis of stress-strain state of a linear elastic two-layer beam is presented. The model considers both slip and uplift at the interface. The solution is employed in assessing the effects of transverse and shear contact stiffnesses and the thickness of the interface layer on behaviour of nailed, two-layer timber beams. The analysis shows that the transverse contact stiffness and the thickness of the interface layer have only a minor influence on the stress-strain state in the beam and can safely be neglected in a serviceability limit state design.

Hall and Ion-Slip effects on magneto-micropolar fluid with combined forced and free convection in boundary layer flow over a horizontal plate

  • Seddeek, M.A.;Abdelmeguid, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제8권2호
    • /
    • pp.51-73
    • /
    • 2004
  • A boundary layer analysis is used to study the effects of Hall and ion-slip currents on the steady magneto-micropolar of a viscous incompressible and electrically conducting fluid over a horizontal plate. By means of similarity solutions, deviation of fundamental equations on the assumption of small magnetic Reynolds number are solved numerically by using the shooting method. The effects of various parameters of the problem, e.g. the magnetic parameter, Hall parameter, ion-slip parameter, buoyancy parameter and material parameter are discussed and shown graphically.

  • PDF

State of the Art on Prediction of Concrete Pumping

  • Kwon, Seung Hee;Jang, Kyong Pil;Kim, Jae Hong;Shah, Surendra P.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권sup3호
    • /
    • pp.75-85
    • /
    • 2016
  • Large scale constructions needs to estimate a possibility for pumping concrete. In this paper, the state of the art on prediction of concrete pumping including analytical and experimental works is presented. The existing methods to measure the rheological properties of slip layer (or called lubricating layer) are first introduced. Second, based on the rheological properties of slip layer and parent concrete, models to predict concrete pumping (flow rate, pumping pressure, and pumpable distance) are explained. Third, influencing factors on concrete pumping are discussed with the test results of various concrete mixes. Finally, future need for research on concrete pumping is suggested.

천이영역의 희박기체 압축성 경계층 해석 (Analysis of rarefied compressible boundary layers in transition regime)

  • 최서원
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

THE CHARACTERISTICS OF FRETTING WEAR

  • Iwabuchi, Akira
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제23회 학술대회
    • /
    • pp.1-3
    • /
    • 1996
  • The characteristics of fretting wear are reviewed. Fretting damage depends on slip amplitude and classified into three groups: (1) an annular damage according to Mindlin's analysis at microslip region, (2) strong adhesive deformation without loose wear particles at the intermediate region, and (3) formation of fine oxide particles at the gross slip region. The critical slip amplitude of fretting is the boundary between (2) and (3). The boundary slip amplitude depends on normal load. The wear rate increases and saturates with increasing slip amplitude. But it is constant by considering the critical amplitude. The role of oxide particles are discussed. Three different actions are noted: accelerating wear, preventing wear and insignificant effect. The oxide shows two opposing effect depends on normal load and slip amplitude. This is related to the removal rate from the interface (abrasive action) and compaction rate at the interface to form a protective layer. The effect of oxidation is significant to determine the wear and friction. The diffusion of oxygen is restricted at the small amplitude. As a result, crack formation at the boundary is a predominant damage, related to fretting fatigue damage.

  • PDF