• 제목/요약/키워드: Slip surface validation

검색결과 3건 처리시간 0.015초

다층 퍼셉트론 신경망을 이용한 사면원호 파괴 예측 (Prediction of Slope Failure Arc Using Multilayer Perceptron)

  • 마지훈;윤태섭
    • 한국지반공학회논문집
    • /
    • 제38권8호
    • /
    • pp.39-52
    • /
    • 2022
  • 사면의 안전율과 임계활동면을 다층 퍼셉트론 신경망(multi-layer perceptron, MLP)을 이용하여 구할 수 있도록 훈련하였다. 사면의 형상은 한국의 설계기준을 참고한 단순 사면으로, 건조한 경우와 지하수위가 존재하는 경우를 모두 고려하였으며 사면을 구성하는 토질의 물성은 세립분을 포함한 사질토로 고려하였다. 훈련에 필요한 데이터를 만들 때 한계평형해석법을 이용하여 42,000가지 경우의 사면안정해석을 수행하였고, 지하수위가 고려된 도메인의 해석에서 불포화토의 모관흡수력으로 인한 유효응력 증가를 고려하였다. 지하수와 유효응력의 분포를 사면안정해석에 적용할 수 있도록 정상상태 침투 해석을 수행하였다. 사면을 표현하는 물성을 입력하면 안전율과 원호 파괴면을 예측할 수 있는 MLP 모델과 모델의 성능을 정량적으로 평가할 수 있는 방법을 제시하였다.

중/고고도 영역에서의 우주발사체 주위 유동에 대한 수치적 연구 (Numerical Investigation of Flows around Space Launch Vehicles at Mid-High Altitudes)

  • 최영재;최재훈;권오준
    • 한국항공우주학회지
    • /
    • 제47권1호
    • /
    • pp.9-16
    • /
    • 2019
  • 본 연구에서는 중/고고도 영역에서 운행되는 우주발사체 주위 유동에 대한 해석을 효율적으로 하기 위해 삼차원 Navier-Stokes 방정식을 해석하는 비 정렬 격자 기반의 맥스웰의 미끄럼 경계조건이 적용된 유동 해석자를 개발하였다. 유동해석자의 검증은 축대칭 형태의 blunted cone-tip 형상에 대한 해석을 통해 수행하였다. 해석 결과는 타 연구자의 실험 및 직접모사법 해석 결과와 비교를 통해 일치하는 결과를 확인하였고, 속도 슬립 및 온도 점프에 대한 예측을 통해 본 유동해석자의 신뢰성을 확보하였다. 검증된 해석자를 이용하여 고도 86km의 중/고고도 영역에서 마하수 6으로 비행하는 우주발사체에 대한 유동 해석을 수행하였으며, 중/고고도 영역에서 나타나는 유동 현상들에 대해 고찰하였다.

초대형 컨테이너선박 방향타의 캐비테이션 수치계산 및 검증 (Numerical Calculation and Validation for Rudder Cavitation of a Large Container Ship)

  • 김건도;문일성;김경열;반석호;이창섭
    • 대한조선학회논문집
    • /
    • 제43권5호
    • /
    • pp.568-577
    • /
    • 2006
  • With the increase of ship size and speed, the loading on the propeller is increasing, which in turn increases the rotational speed in the propeller slipstream. The rudder placed in the propeller slip stream is therefore subject to severe cavitation with the increased angle of attack due to the increased rotational induction speed of the propeller. In the present paper the surface panel method, which has been proved useful in predicting the sheet cavitation on the propeller blade, is applied to solve the cavity boundary value problem on the rudder. The problem is then solved numerically by discretizing the rudder and cavity surface elements of the quadrilateral panels with constant strengths of sources and dipoles. The strengths of the singularities are determined satisfying the boundary conditions on the rudder and cavity surfaces. The extent of the cavity, which is unknown a priori, is determined by iterative procedure. Series of numerical experiments are performed increasing the degree of complexity of the rudder geometry and oncoming flows from the simple hydrofoil case to the real rudder in the circumferentially averaged propeller slipstream. Numerical results are presented with experimental results.