• Title/Summary/Keyword: Slip regime

Search Result 48, Processing Time 0.02 seconds

Electrical Mobility Behavior of Nanoparticle Fractal Agglomerates in the Slip Regime (미끄럼 영역에 있는 나노입자 프랙탈 응집체의 전기이동도 거동 특성)

  • Shin, Weon Gyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.2
    • /
    • pp.211-216
    • /
    • 2013
  • For diffusion limited cluster agglomerates the ratio of the mobility radius to the radius of gyration $R_m/R_g$ vs. N and the ratio of the mobility radius to the radius of primary particle $R_m$/a are determined using experimental data obtained with DMA-APM and tandem DMA over a range of Knudsen numbers extending into the transition region where there is a lack of data. It was found that in slip regime with the number of primary particles between 100 and 400, datapoints are found to be between the two asymptotic lines for the continuum and free molecular regimes as those datapoints are plotted in both $R_m/R_g$ vs. N and $R_m$/a vs. N.

Contact Condition of Zircaloy-4 Tube and Support and Transition of Slip Regime (지르칼로이-4 튜브 및 지지부의 접촉조건과 미끄럼 상태의 천이)

  • 김형규;강흥석;윤경호;송기남
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.81-88
    • /
    • 2001
  • To study the influence of the shape of contacting bodies (especially the end profile) on slip regime, wear test is conducted in the case of the contact between tube and support. Two different end profiles of the support are used such as truncated wedge and rounded punch. During the test, 10, 30 and 50 N are applied as normal force and slip displacement varies between 10-200 $\mu\textrm{m}$. The tube and the support specimens are made of Zircaloy-4 and a specially designed wear tester is used. Tests are carried out in air at room temperature. Wear on the tube is examined by measuring microscope. Partial and gross slip regimes are classified from the observed wear shape. Surface roughness tester is also used to measure the wear depth and contour, from which wear volume is evaluated. The transition from partial to gross slip is also investigated by investigating the considerable increase of wear volume. From the result, the boundary between the partial and the gross slip is newly determined in the conventional fretting map for the present specific contact configuration. Since the transition is related with the amount of energy dissipation from the contact surface so is wear, it is regarded that wear can be restrained by designing a proper shape of support.

  • PDF

Analysis of Flow Resistance in Microchannels at Slip-Flow Regime by Direct Simulation Monte Carlo Method (DSMC를 이용한 미끄럼흐름영역에서 미소채널의 유동저항 해석)

  • Sung Jaeyong;Ahn Youngkyoo;Lee Sukjong;Lee Myeong Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.1-7
    • /
    • 2006
  • The characteristics of micro gaseous flows in microchannels have been analyzed in view of flow resistance using the direct simulation Monte Carlo (DSMC) method which is a molecule-based numerical modeling technique. For this purpose, a DSMC code where the pressure boundary condition was specified at the inlet and outlet, has been developed and the results of simulations showed satisfactory agreements with the analytic solution in the slip flow regime. (0.01 < Kn < 0.1) By varying the height and length of the microchannel, the effect of pressure difference between the inlet and outlet was examined. The present computation indicates that the curvature in pressure distribution along the channel increases due to the effect of compressibility when the pressure difference increases. To obtain the flow resistance regardless of the channel dimensions, a standard curve is devised in the present study by introducing the concept of unit mass flowrate and unit driving pressure force. From this curve, it is shown that in micro flows, a significant deviation from the laminar incompressible flow occurs by reducing the flow resistance.

Investigation of Wear Mechanisms of Tube Materials for Nuclear Steam Generators due to Stick-Slip Behavior under Fretting Conditions (프레팅 조건하에 있는 증기 발생기 세관재의 스틱-슬립 영역별 마멸 메커니즘 규명)

  • Lee Young-Ze;Jeong Sung-Hoon;Park Chi-Yong
    • Tribology and Lubricants
    • /
    • v.21 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Fretting is the oscillatory motion with very small amplitudes, which usually occurs between two solid surfaces in contact. Fretting wear is the removal of material from contacting surfaces through fretting action. Fretting wear of steam generator tubes in nuclear power plant becomes a serious problem in recent years. The materials for the tubes usually are Inconel 690 (I-690) and Inconel 600 (I-600). In this paper, fretting wear tests for I-690 and I-600 were performed under various applied loads in water at room temperature. Results showed that the fretting wear loss of I-690 and I-600 tubes was largely influenced by stick-slip. The fretting wear mechanisms were the abrasive wear in slip regime and the delamination wear in stick regime. Also, I-690 had somewhat better wear resistance than I-600.

Analysis of rarefied compressible boundary layers in transition regime (천이영역의 희박기체 압축성 경계층 해석)

  • Choe, Seo-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.

A Study on the Pumping Performance of a Disk-type Drag Pump (원판형 드래그펌프의 배기특성에 관한 연구)

  • Hwang, Young-Kyu;Heo, Joong-Sik;Choi, Wook-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.860-869
    • /
    • 2000
  • Numerical and experimental investigations are performed for the molecular transition and slip flows in pumping channels of a disk-type drag pump. The flow occurring in the pumping channel develops from the molecular transition to the slip flow traveling downstream. Two different numerical methods are used in this analysis: the first one is a continuum approach in solving the Navier-Stokes equations with slip boundary conditions, and the second one is a stochastic approach through the use of the direct simulation Monte Carlo method. In the experimental study, the inlet pressures are measured for various outlet pressures in the range of 0.1{\sim}4Torr. From the present study, the numerical results of predicting the performance, obtained by both methods, agree well with the experimental data for the range of Knudsen number $Kn{\leq}0.1$ (i.e., the slip flow regime). But the results from the second method only agree with the experimental data for Kn>0.1(i.e., the molecular transition regime)

Numerical Analysis of Microchannel Flows Using Langmuir Slip Model (Langmuir 미끄럼 모형을 사용한 미소채널 유동의 수치해석)

  • Maeng, Ju-Seong;Choe, Hyeong-Il;Lee, Dong-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.587-593
    • /
    • 2002
  • The present research proposes a pressure based approach along with Langmuir slip condition for predicting microscale fluid flows. Using this method, gaseous slip flows in 2 -dimensional microchannels are numerically investigated. Compared to the DSMC simulation, statistical errors could be avoided and computing time is much less than that of the aforementioned molecular approach. Maxwell slip boundary condition is also studied in this research. These two slip conditions give similar results except for the pressure nonlinearity at high Knudsen number regime. However, Langmuir slip condition seems to be more promising because this does not need to calculate the streamwise velocity gradient accurately and to calibrate the empirical accommodation coefficient. The simulation results show that the proposed method using Langmuir slip condition is an effective tool for predicting compressibility and rarefaction in microscale slip flows.

Pressure Correction Method and Slip Boundary Conditions for Microflows (미소유동 해석을 위한 압력수정기법 및 미끄럼 경계조건)

  • Choi, Hyung-Il;Maeng, Joo-Sung;Lee, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.430-435
    • /
    • 2001
  • This paper introduces a pressure correction method for microflow computation. Conventional CFD methods with no slip boundary condition fail to predict the rarefaction effect of the wall when simulating gas microflows in the slip-flow regime. Pressure correction method with an appropriate slip boundary condition is an efficient tool in analyzing microscale flows. The present unstructured SIMPLE algorithm adopts both the classical Maxwell boundary condition and Langmuir boundary condition proposed by Myong. The simulation results of microchannel flows show that the proposed method has an effective predictive capability for microscale flows.

  • PDF

Simulations of spacing of localized zones in reinforced concrete beams using elasto-plasticity and damage mechanics with non-local softening

  • Marzec, I.;Bobinski, J.;Tejchman, J
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.377-402
    • /
    • 2007
  • The paper presents quasi-static plane strain FE-simulations of strain localization in reinforced concrete beams without stirrups. The material was modeled with two different isotropic continuum crack models: an elasto-plastic and a damage one. In case of elasto-plasticity, linear Drucker-Prager criterion with a non-associated flow rule was defined in the compressive regime and a Rankine criterion with an associated flow rule was adopted in the tensile regime. In the case of a damage model, the degradation of the material due to micro-cracking was described with a single scalar damage parameter. To ensure the mesh-independence and to capture size effects, both criteria were enhanced in a softening regime by nonlocal terms. Thus, a characteristic length of micro-structure was included. The effect of a characteristic length, reinforcement ratio, bond-slip stiffness, fracture energy and beam size on strain localization was investigated. The numerical results with reinforced concrete beams were quantitatively compared with corresponding laboratory tests by Walraven (1978).

NUMERICAL STUDY OF WEDGE FLOW IN RAREFIED GAS FLOW REGIME USING A SLIP BOUNDARY CONDITION (희박기체 영역에서 미끄럼 경계조건을 적용한 쐐기 형상 주위의 유동 해석)

  • Choi, Y.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.40-48
    • /
    • 2014
  • For rarefied gas flow regimes, physical phenomena such as velocity slip and temperature jump occur on the solid body surface. To predict these phenomena accurately, either the Navier-Stokes solver with a slip boundary condition or the direct simulation Monte Carlo method should be used. In the present study, flow simulations of a wedge were conducted in Mach-10 flow of argon gas for several different flow regimes using a two-dimensional Navier-Stokes solver with the Maxwell slip boundary condition. The results of the simulations were compared with those of the direct simulation Monte Carlo method to assess the present method. It was found that the values of the velocity slip and the temperature jump predicted increase as the Knudsen number increases. Also, the results are comparatively reasonable up to the Knudsen number of 0.05.