• Title/Summary/Keyword: Slip friction

Search Result 432, Processing Time 0.025 seconds

Friction Model to Realize Self-Excited Vibration of Multi-body Systems (다물체계의 자려진동 구현을 위한 마찰 모델링)

  • Roh, Hyun-Young;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.103-108
    • /
    • 2007
  • This paper presents a friction model to realize self-excited vibration of multi-body systems. The friction coefficient is modeled with a spline function in most commercial codes. Even if such a function resolves the problem of discontinuity in friction force, it cannot realize self-excited vibration phenomena. Furthermore, as the relative velocity approaches zero, the friction coefficient approaches zero with the conventional model. So, slip occurs when small force is applied to the system. To avoid these problems a new friction model is proposed in this study. With the new friction model, the self-excited vibration can be realized since the friction coefficient changes with the relative velocity. Furthermore, the slip phenomena could be reduced significantly with the proposed model.

  • PDF

Friction Model to Realize Self-excited Vibration of Multi-body Systems (다물체계의 자려진동 구현을 위한 마찰 모델링)

  • Roh, Hyun-Young;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.524-530
    • /
    • 2007
  • This paper presents a friction model to realize self-excited vibration of multi-body systems. The friction coefficient is modeled with a spline function in most commercial codes. Even if such a function resolves the problem of discontinuity in friction force, it cannot realize self-excited vibration phenomena. Furthermore, as the relative velocity approaches zero, the friction coefficient approaches zero with the conventional model. So, slip occurs when small force is applied to the system. To avoid these problems a new friction model is proposed in this study. With the new friction model, the self-excited vibration can be realized since the friction coefficient changes with the relative velocity. Furthermore, the slip phenomena could be reduced significantly with the proposed model.

Effect of Aspect Ratio on Gas Microchannel Flow (마이크로채널 흐름에 관한 종횡비의 영향)

  • Tajul, Islam;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.16-21
    • /
    • 2007
  • Three dimensional numerical study was carried out to investigate the effect of aspect ratio on microchannel flow. We considered five straight rectangular channels with aspect ratios (height/width) 0.2, 0.4, 0.6, 0.8 and 1.0. Nitrogen gas flow was investigated for both slip and noslip wall boundary conditions. Isothermal wall condition was assumed. We used control volume method for this simulation. The slip velocity increases with the increase of aspect ratio. Friction coefficient decreases with the increase of aspect ratio. Slip friction coefficient is lower than noslip friction coefficient. Mass flow rate of slip model is higher than that of noslip model. We compared our results with the experimental result reported in the literature. The agreement was good.

  • PDF

Comparison of Friction model on the variable DOE system (자유도 변화 시스템의 해석에 사용되는 마찰 모델의 비교)

  • Lee, Chin-Won;Cho, Hyung-Jun;Jang, Wook-Jin;Lim, Won-Sik;Lee, Jang-Moo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.672-677
    • /
    • 2000
  • This paper compares the two kinds of friction model. The first model is classical stick/slip model. In the stick/slip model, the system is treated to have two different states, namely, stick state or slip state. The second one is continuous model developed by Dahl et. al, namely, Extended Dahl's model. Each model has unique properties, and can be best useful when it is applied on the appropriate system. In this paper, each model is applied on the simple two-block system and the complex automatic transmission system. And the simulation result including simulation accuracy and time required are compared.

  • PDF

Effect of rotor slip on the gear ratio of wobble motor (회전자 슬립이 wobble 모터의 기어비에 미치는 영향)

  • Yun, Seo-Jin;Lee, Eun-Woong;Woo, Sung-Bong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.339-341
    • /
    • 1999
  • This paper presents the gear ratio of wobble motor, accounting for finite friction in contact point. The gear ratio of a wobble motor is affected by rotor slip, which is a function of motive torque, excitation angle, and friction torque. The gear ratio of a wobble motor can be expressed as a constant term plus a term that accounts for rotor slip. The ideal gear ratio is constant term and is equal to the rotor radius divided by the distance between the center of the rotor and the center of the stator. The rotor-slip term is shown to be directly proportional to the contact point friction torque and inversely proportional to the square of the excitation voltage.

  • PDF

Study on the reduction of stick-slip noise in acrylonitrile butadiene styrene-based plastics using non-polar additives to reduce friction (마찰 저감을 위한 비극성 첨가제에 따른 acrylonitrile butadiene styrene계 플라스틱의 stick-slip 이음 저감 연구)

  • Sangjun Yeo;Yewon Jeong;Sunguk Choi;Hyojun Kim;Geonwook Park;Minyoung Shon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.49-59
    • /
    • 2024
  • Recently, the electric vehicle market is gradually growing due to strengthened environmental regulations and high oil prices. also, in internal combustion engine vehicles, the sensitivity of Buzz, Squeak, Rattle (BSR) noise is increasing as engine Noise, Vibration, and Harshness (NVH)-related noise is reduced and technology for shielding noise coming from outside is developed. In this study, the stick-slip noise that occurs in Panoramic Curved Display (PCD) of automobile was analyzed for the correlation between the surface energy of polymer plastic and the polar component. For polar polymer materials, Acrylonitrile Butadiene Styrene (ABS) and PolyCarbonate-Acrylonitrile Butadiene Styrene (PC-ABS), compound materials were fabricated and evaluated. As a result, when the polar component of the polymer plastic was 3.86 mN/m or higher, stick-slip motion occurred, and as the absolute transition slope increased in the friction behavior over time, the possibility of stick-slip noise increased and the value of the friction coefficient The greater the difference, the greater the strength of the stick-slip noise.

A Study on the Analysis of Design Parameters for Development of LSD (다판 클러치방식 차동제한장치 개발을 위한 설계인자 분석에 관한 연구)

  • Shin, Young-Ho;Lee, Dong-Won;Shin, Chun-Se
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.15-21
    • /
    • 2010
  • A differential case equipped with LSD(limited slip differential) has several advantages over a normal type for rear wheel drive vehicles. Specially, the torque distribution can be done between left and right drive wheel in the state of limited slip differential. Also although LSD types are very various according to operating type, medium and torque distribution, a multi-clutch type is generally applied to rear wheel drive vehicles. So, this study presents the analysis of design parameters for development of a friction plate for multi-clutch type LSD using vehicle road test, the simulation of analytical model and the development of vehicle dynamics model by a benchmark product. According to this investigation, the design parameters which are pre-load of coil spring, friction plate and contact area quantity, friction coefficient and TBR(torque bias ratio) for a friction plate are derived from experiment and simulation and consequently, vehicle dynamics model has been constructed for the development of friction plate for multi-clutch type LSD.

A Study on Slip Behavior of Fiber Preform by High Speed Resin Flow in High Pressure Resin Transfer Molding (고압 RTM 공정에서 고속 수지 유동에 의한 섬유 보강재의 변형 거동에 관한 연구)

  • Ahn, Jong-Moo;Seong, Dong-Gi;Lee, Won-Oh;Um, Moon-Kwang;Choi, Jin-Ho
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • This paper presents the slip behavior of composite fabrics by high speed resin flow in high pressure resin transfer molding. In order to observe the fiber deformation behavior, we constructed the measuring equipment for friction coefficient between fiber and mold, and the monitoring system for deformation of fiber preform in high-pressure RTM process. Coulomb friction coefficient and hydrodynamic friction coefficient between fiber preform and mold were measured and the external force induced by fluid flow causing the deformation of fiber preform was measured. Friction force calculated by friction coefficient and the external force upon fiber deformation were compared, which showed that preform deformation occurred when the external force was bigger than the friction force. The slip behavior of the fiber preform was mainly influenced by the volume fraction of fiber preform and the friction coefficient.

A Study on the Characteristics of an Amplitude Proportional Friction Damper (변위비례식 마찰댐퍼의 특성에 관한 연구)

  • 박동훈;최명진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.717-720
    • /
    • 2002
  • An Amplitude Proportional Friction Damper (APFD) system is considered in order to improve the stick-slip characteristics of Coulomb friction damper. The frictional force is proportional to the amplitude in APFD system and the system is non-linear as is Coulomb damper system. The free vibration analysis on an 1-DOF system has conducted to demonstrate the characteristics of the APFD system and the results show that the APFD system has similar damping characteristics to the viscous damper system. It is concluded that the APFD system may become a cost effective substitution for the viscous damper and it also has certain advantages over Coulomb damper system since the APFD system can be designed to work with no stick-slip.

  • PDF

Analysis of the Frictional Behavior of Rubber Block (고무 블록의 마찰 거동 해석)

  • Kim, Doo-Man;Yoo, Hyun-Seung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.16-22
    • /
    • 2006
  • The friction and wear of tire determined by frictional behavior of tire tread that translate driving force, cornering force and braking force between automobile and road as a result of frictional behavior of each tread block. The tire tread block is representative case of rubber block doing frictional behavior. In this paper, frictional behavior of rubber block under compressive force and shear force was analytically obtained by using slip starting position parameter instead of friction coefficient which is uncertain to express exact value between rubber and other surfaces yet. And local coefficients of friction were calculated as a function of compressive force, shear force, shear modulus of rubber, shape factor and slip starting position.

  • PDF