• Title/Summary/Keyword: Slip failure

Search Result 282, Processing Time 0.027 seconds

A Stability Analysis of Geosynthetics Reinforced Soil Slopes II - Evaluation of Required Reinforcement Tensile Force - (토목섬유 보강 성토사면의 안정해석 II. - 소요 보강재 인장력 평가 -)

  • Kim Kyeong-Mo;Kim Hong-Taek;Lee Eun-Soo;Kim Young-Yoon;Ahn Kwang-Kuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.107-116
    • /
    • 2005
  • Generally, when the stability of the geosynthetic reinforced soil slopes is analyzed, the required tensile forces of each reinforcement layers are calculated from total reinforcement forces which are necessary to retain the equilibrium state of slip mass in which the slip surfaces are assumed to be a linear or bilinear. It is assumed that the reinforcement forces are increased or constant with depth. However, according to the instrumented field data and laboratory model test results, the maximum tensile strain of reinforcement in a reinforced soil slope is developed in a certain elevation, not a bottom of the slope. In the concept of reinforced soil, postulated failure surfaces are the traces of the position in which the reinforcement tensile forces are maximum in the layer, and the reinforcement tensile forces are related to the stress state on the postulated failure surface. Therefore, in this study, based on the distribution of normal stress on the slip surface, a new method for the evaluation of required tensile forces is suggested and a number of the instrumented field data are analyzed by newly suggested method. As a result, it is shown that the newly suggested method produces relatively accurate reinforcement tension forces.

An Experimental Study for Flexural Bonding Characteristic of GFRP Rebar (GFRP 보강근의 휨.부착특성에 관한 실험적 연구)

  • Sim, Jong-Ung;Oh, Hong-Secb;Ju, Min-Kwan;Kang, Tae-Sung;Kim, Woo-Jung;Lee, Won-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.282-285
    • /
    • 2006
  • This study is to examine bond strength of beam reinforced with GFRP rebar under 4-point bending test by adopting BRITISH STANDARD. The variables were made to have bonding length of 5times$(5d_b)$, 10times$(10d_b)$ and 15times$(15d_b)$ of the nominal diameter of GFRP rebar and were done to analyze the relationship between the bonding strength and the slip. In the result of the test, pull-out failure was dominant in the $5d_b$ and $10d_b$ specimen, both patterns of the pull-out failure and concrete splitting failure appeared in the $10d_b$. On the other hand, the $15d_b$ specimen showed only concrete splitting failure at the end of bonding length. Therefore, it was prove that available bonding length of the GFRP rebar under bending condition on static test is over $15d_b$ then farther research such as fatigue bending test, development of bonding model, FEM parameter study should be performed.

  • PDF

Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints

  • Liu, Xinrong;Liu, Yongquan;Lu, Yuming;Kou, Miaomiao
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.407-423
    • /
    • 2020
  • The pre-peak cyclic shear mechanism of two-order asperity degradation of rock joints in the direct shear tests with static constant normal loads (CNL) are investigated using experimental and numerical methods. The laboratory testing rock specimens contains the idealized and regular two-order triangular-shaped asperities, which represent the specific geometrical conditions of natural and irregular waviness and unevenness of rock joint surfaces, in the pre-peak cyclic shear tests. Three different shear failure patterns of two-order triangular-shaped rock joints can be found in the experiments at constant horizontal shear velocity and various static constant normal loads in the direct and pre-peak cyclic shear tests. The discrete element method is adopted to simulate the pre-peak shear failure behaviors of rock joints with two-order triangular-shaped asperities. The rock joint interfaces are simulated using a modified smooth joint model, where microscopic scale slip surfaces are applied at contacts between discrete particles in the upper and lower rock blocks. Comparing the discrete numerical results with the experimental results, the microscopic bond particle model parameters are calibrated. Effects of cyclic shear loading amplitude, static constant normal loads and initial waviness asperity angles on the pre-peak cyclic shear failure behaviors of triangular-shaped rock joints are also numerically investigated.

A Quantitative Physical Parameter for Detection of Ultimate Failure State of Soil Using CEL Method in Finite Element Analysis (CEL 기법을 이용한 유한 요소 해석에서 지반의 극한 파괴 상태 감지를 위한 정량적 물리량 기준)

  • Kim, Seongmin;Lee, Ju-Hyung;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.59-69
    • /
    • 2018
  • In order to use the limit equilibrium theory, it is necessary to find a slip line under the ultimate failure condition. The strength reduction method using the Lagrangian finite element method defines the ultimate failure state at a time when the numerical solution cannot converge within the certain number of the iteration. When the coupled Eulerian-Lagrangian (CEL) method is used, however, such definition is inappropriate because the numerical solution of the CEL method can converge even under the ultimate failure condition. In this study, an objective condition designating the ultimate failure state in the finite element analysis adopting the CEL method was proposed. In the problem of the bearing capacity of the undrained soft ground subjected to the strip footing loading, we found that the rate of the plastic dissipated energy is highly sensitive at the load of the theoretical limit of the ultimate failure state.

Truss Model for Bar Development in Beam End Region (보 단부의 정착에 관한 트러스 모델)

  • 김대진;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.659-664
    • /
    • 1999
  • The majority of published conclusions about structural configuration effects of bond strength were based on the observed performance of test specimens and their interpretations are mostly empirical and statistical. The empirical and statistical interpretation on bond strength have to be replaced by rational models based on simple, sound and verifiable mechanical principles. It is likely that such models also represent the key to a deeper understanding of some existing experimental data on bond strength. The presented truss model is capable of explaining failure modes involving bond slip that cannot be explained by current truss model.

  • PDF

A Theoretical Study on the FRP Retrofit of Existing Circular Bridge Piers for Seismic Performance Enhancement (기존 원형교각의 내진성능 향상을 위한 FRP 보강에 대한 이론적 연구)

  • Kwon Tae-Gyu;Choi Young-Min;Hwang Yoon-Knok;Yoon Soon-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.61-69
    • /
    • 2004
  • The bridge piers under service suffered a brittle failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or ductility. The earthquake induced lateral force results in tension which causes bond-slip failure at the lap-spliced region in circular bridge piers. In this case, such a brittle failure can be controlled by the seismic retrofit using FRP laminated circular tube. The retrofitted piers using FRP laminated circular tube showed significant improvement in seismic performance due to FRP's confinement effect. This paper presents the analytical results on the seismic strengthening effect of circular bridge piers with poor lap-splice details and strengthened with FRP laminated circular tube. FRP's confinement effect is predicted by the classical elasticity solution for the laminated circular tube manufactured with several layers. The FRP laminated circular tube induces the flexural failure instead of a bond-slip failure of the circular reinforced concrete piers under seismic induced lateral forces. To investigate the correctness and effectiveness of analytical solution derived in this study, the analytical results were compared with the experimental data and it was confirmed that the results were correlated well each other, The effects on the confinement of FRP laminated circular tube, such as the number of layers, the fiber orientations, and the mechanical properties, were investigated. From the parametric study, it was found that the number of layers, the fiber orientations, and the major Young's modulus (E11) of the FRP laminated circular tube were the dominant parameters affecting the confinement of reinforced concrete circular bridge piers.

Nonlinear modeling of flat-plate structures using grid beam elements

  • Tian, Ying;Chen, Jianwei;Said, Aly;Zhao, Jian
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.489-505
    • /
    • 2012
  • This paper presents a simplified grid beam model for simulating the nonlinear response of reinforced concrete flat-plate structures. The beam elements are defined with nonlinear behavior for bending moment and torsion. The flexural stiffness and torsional strength of the beam elements are defined based on experimental data to implicitly account for slab two-way bending effects. A failure criterion that considers the interaction between the punching strength and slab flexural behavior is incorporated in the model. The effects of bond-slip of slab reinforcement on connection stiffness are examined. The proposed grid beam model is validated by simulating large-scale tests of slab-column connections subjected to concentric gravity loading and unbalanced moment. This study also determines the critical parameters for a hysteretic model used to simulate flat-plates subjected to cyclic lateral loading.

Circumferential Confinement Effect on Lap-Spliced Reinforcements of Circular Bridge Pier (횡방향 구속이 교각의 겹침이음에 미치는 영향에 대한 고찰)

  • 최영민;황윤국;권태규;박경훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.339-342
    • /
    • 2003
  • The bridge columns with lap-splice reinforcements in earthquake suffered a brittle bond-slip failure due to deterioration of the lap-spliced longitudinal reinforcements without developing its flexural capacity or ductility. In this case, such a brittle failure can be controlled by the seismic retrofit using FRP wrapping. The retrofitted columns using FRP wrapping showed significant improvement in seismic performance due to FRP's confinement effect. This paper presents the circumferential confinement effect of existing circular bridge pier strengthened with FRP wrapping for poor lap-splice details. The effects on the confinement of FRP wrapping, such as gap lengths between footing and FRP, fiber orientations, and thicknesses of FRP, were investigated by quasi-static experiments.

  • PDF

Circumferential Confinement Effect of Circular Bridge Pier with FRP Wrapping in Earthquake (지진발생시 FRP 보강이 횡방향 구속에 미치는 효과)

  • 최영민;황윤국;권태규;윤순종
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.280-287
    • /
    • 2003
  • The bridge columns with lap-splice reinforcements in earthquake suffered a brittle bond-slip failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or ductility. In this case, such a brittle failure can be controlled by the seismic retrofit using FRP wrapping. The retrofitted columns using FRP laminated circular tube showed significant improvement in seismic performance due to FRP's confinement effect. This paper presents the circumferential confinement effect of existing circular bridge pier strengthened with FRP wrapping for poor lap-splice details. The effects on the confinement of FRP wrapping, such as gap lengths between footing and FRP, fiber orientations, and thicknesses of FRP, were investigated by Quasi-static experiments.

  • PDF

Stability assessment of soil slopes in three dimensions: The effect of the width of failure and of tension crack

  • Pantelidis, Lysandros;Gravanis, Elias;Gkotsis, Konstantinos-Paraskevas
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.319-328
    • /
    • 2020
  • This paper investigates the effect of the width of failure and tension crack (TC) on the stability of cohesive-frictional soil slopes in three dimensions. Working analytically, the slip surface and the tension crack are considered to have spheroid and cylindrical shape respectively, although the case of tension crack having planar, vertical surface is also discussed; the latter was found to return higher safety factor values. Because at the initiation of a purely rotational slide along a spheroid surface no shear forces develop inside the failure mass, the rigid body concept is conveniently used; in this respect, the validity of the rigid body concept is discussed, whilst it is supported by comparison examples. Stability tables are given for fully drained and fully saturated slopes without TC, with non-filled TC as well as with fully-filled TC. Among the main findings is that, the width of failure corresponding to the minimum safety factor value is not always infinite, but it is affected by the triggering factor for failure (e.g., water acting as pore pressures and/or as hydrostatic force in the TC). More specifically, it was found that, when a slope is near its limit equilibrium and under the influence of a triggering factor, the minimum safety factor value corresponds to a near spherical failure mechanism, even if the triggering factor (e.g., pore-water pressures) acts uniformly along the third dimension. Moreover, it was found that, the effect of tension crack is much greater when the stability of slopes is studied in three dimensions; indeed, safety factor values comparable to the 2D case are obtained.