• Title/Summary/Keyword: Slip Test

Search Result 700, Processing Time 0.033 seconds

Experimental Observation on Bond-Slip Behavior between Concrete and CFRP Plate

  • Yang, Dong-Suk;Hong, Sung-Nam;Park, Sun-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • This paper discusses the failure mode of reinforced concrete beams strengthened with composite materials based on six experimental set-ups to determine the FRP-to-concrete bond strength. Interfacial bond behavior between concrete and CFRP plates was discussed. Shear test were performed with different concrete compressive strengths (21 MPa and 28 MPa) and different bonding length (100 mm, 150 mm, 200 mm, and 250 mm). Shear test results indicate that the effective bond length (the bond length beyond which the ultimate load does not increase) was estimated as $196{\sim}204\;mm$ through linear regression analysis. Failure mode of specimens occurred due to debonding between concrete and CFRP plates. Maximum bond stress is calculated as about $3.0{\sim}3.3\;MPa$ from the relationships between bond stress and slip. Finally, the interfacial bond-slip model between CFRP plates and concrete, which is governed debonding failure, has been estimated from shear tests. Average bond stress was about $1.86{\sim}2.04\;MPa$, the volume of slip between CFRP plate and concrete was about $1.45{\sim}1.72\;mm$, and the fracture energy was found to be about $1.35{\sim}1.71\;N/mm$.

Static behaviour of multi-row stud shear connectors in high- strength concrete

  • Su, Qingtian;Yang, Guotao;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.967-980
    • /
    • 2014
  • In regions of high shear forces in composite bridges, headed stud shear connectors need to be arranged with a small spacing in order to satisfy the design requirement of resisting the high interface shear force present at this location. Despite this, studies related to groups of headed studs are somewhat rare. This paper presents an investigation of the static behaviour of grouped stud shear connectors in high-strength concrete. Descriptions are given of five push-out test specimens with different arrangements of the studs that were fabricated and tested, and the failure modes, load-slip response, ultimate load capacities and related slip values that were obtained are reported. It is found that the load-slip equation given by some researchers based on a single stud shear connector in normal strength concrete do not apply to grouped stud shear connectors in high-strength concrete, and an algebraic load-slip expression is proposed based on the test results. Comparisons between the test results and the formulae provided by some national codes show that the equations for the ultimate capacity provided in these codes are conservative when used for connectors in high-strength concrete. A reduction coefficient is proposed to take into account the effect of the studs being in a group.

Bond-Slip Model for CFRP Sheet-Concrete Adhesive Joint (탄소섬유쉬트-콘크리트 부착이음의 부착 모델)

  • Cho, Jeong-Rae;Cho, Keunhee;Park, Young-Hwan;Park, Jong-Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.285-292
    • /
    • 2006
  • In this study, a method determining the local bond-slip model from pure shear test results of CFRP sheet-concrete adhesive joints is proposed and local bond-slip models are presented. Adhesive joints with a specific bond-slip model, which is assumed as multi-linear curve in order to represent arbitary function, are solved numerically. The difference between the solution and test results are minimized for finding the bond-slip model. The model with bilinear curve is also optimized to verify the improvement of multi-linear model. The selected test results are ultimate load-adhesive length curves from a series of adhesive joints and load-displacement curves for each joint. The optimization problem is formulated by physical programming, and the optimized bond-slip model is found using genetic algorithm.

Quadrant Protrusion error Modeling Through the Identification of Friction (마찰력 규명을 통한 상한절환 오차 모델링)

  • 김민석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.371-376
    • /
    • 1999
  • Stick-slip friction is present to some degree in almost all actuators and mechanisms and is often responsible for performance limitations. Simulation of stick-slip friction is difficult because of strongly nonlinear behavior in the vicinity of zero velocity. A straightforward method for representing and simulating friction effects is presented. True zero velocity sticking is represented without equation reformulation or the introduction of numerical stiffness problems. Stick-slip motion is investigated experimentally, and the fundamental characteristics of the stick-slip motion are clarified. Based on these experimental results, the characteristics of static in the period of stick and kinetic friction in the period of slip are studied concretely so as to clarify the stick-slip process.

  • PDF

Abrasion Behaviors of NR/BR Compounds Using Laboratory Abrasion Tester

  • Son, Chae Eun;Yang, Seong Ryong;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.56 no.1
    • /
    • pp.12-19
    • /
    • 2021
  • The abrasion behaviors of NR/BR blend vulcanizates were investigated using NR/BR = 100/0, 80/20, and 60/40 compounds. The abrasion test was performed using a laboratory abrasion tester (LAT) at slip angles of 1° and 7°. The size distributions of the wear particles and the abrasion rates were examined according to the rubber compositions and slip angles. The most abundant wear particles at the slip angle of 1° were sizes above 1,000 ㎛, irrespective of the rubber composition. The most abundant wear particles at 7° slip angle had sizes in the range of 212-500 ㎛, except for the NR = 100 sample. The wear particle size distribution shifted to a smaller size as the slip angle and BR content increased. The abrasion rate at 7° was much larger than that at 1° slip angle. Furthermore, the abrasion rate was notably increased by adding BR to NR.

Bond-Slip Tests of V-ties as a Supplementary Lateral Reinforcement (보조 띠철근으로써 V-타이의 부착-미끄러짐 관계 실험)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.157-158
    • /
    • 2017
  • This tests examined bond stress-slip relationship of V-ties embedded into concrete as a supplementary lateral reinforcement proposed for ductility of concrete flexural members. The different leg shapes of V-ties were prepared as a test parameter. The V-tie with pressed end-legs exhibited 28% higher bond strength than the conventional V-ties, whereas bond stress-slip curves were insignificantly affected by the embedment length of V-ties.

  • PDF

A Study on the Change of Slipperiness of Building Floor-coverings by Friction Wear (건축물 바닥재의 마모에 따른 미끄럼성능 변동에 관한 연구)

  • Shin, Yun-Ho;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.1 s.15
    • /
    • pp.53-61
    • /
    • 2005
  • The purpose of this study presents useful data on the choice or development of floor covering from slip viewpoint by examining closely the impact of the changes in sliding experiments due to the wear of floor covering by walk. The result of wear practical test per ten thousand walks enforces some kind of popular floor covering and measure of coefficient of slip resistance as follows: (1) When surface of floor covering is in the state of wet, the degree of wear doesn't affect greatly in slip. (2) When surface of floor covering is in dry and clean state, most floor coverings have the tendency to lower the coefficient of slip resistance with the amount of walk on it. (3) Change in the tendency of slip resistance by wear appeared mainly due to the differences in the state of floor covering and organic floor covering appeared to have great reduction of coefficient of slip resistance than the inorganic ones. (4) According to the result of investigation on changes in tendency of coefficient of slip resistance due to the increase in the number of walk and if two hundred thousand walks were done, regardless of surface shape or kind of site, etc, the safety of floor covering, in slip viewpoint, greatly reduces.

A Study on the Slip Test of Shear Connector in Fire (전단 연결재의 고온 성능 평가에 관한 연구)

  • Han, Sang-Hoon;Park, Won-Sup;Lee, Choul-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.48-51
    • /
    • 2008
  • Shear connector is the element which resist in the horizontal shear force between steel and concrete of composite members and the stud bolt is often used because of its constructional convenience and serviceability. Although the push-out test is the most common method to evaluate shear slip behaviour, it is suitable for only room temperature conditions. In this study, we investigated about shear force, temperature distribution and slip displacement of shear connector in high temperature through the modified push-out test with electronic furnace invented for steel part heating.

  • PDF

Effect of slip system transition on the deformation behavior of Mg-Al alloy: internal variable based approach (비탄성 변형 이론을 바탕으로 한 Mg-Al 합금의 슬립기구 천이 현상 해석)

  • Lee H. S.;Bang W.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.186-189
    • /
    • 2004
  • Although magnesium has high potential for structural material due to the lightweight and high specific strength, the structural application has been limited by the low ductility at room temperature. The reason of the poor ductility is few activated slip systems of magnesium (HCP structure) during deformation. As temperature increases, however, additional non-basal slip systems are incorporated to exhibit higher ductility comparable to aluminum. In the present study, a series of tensile tests of Mg-Al alloy has been carried out to study deformation behavior with temperature variation. Analysis of load relaxation test results based on internal variable approach gave information about relationship between the micromechanical character and corresponding deformation behavior of magnesium. Especially, the material parameter, p representing dislocation permeability through barriers was altered from 0.1 to 0.15 as the non-basal slip systems were activated at high temperature.

  • PDF

Effect of Slip System Transition on the Deformation Behavior of Mg-Al Alloy: Internal Variable Based Approach (비탄성 변형 이론을 바탕으로 한 Mg-Al 합금의 슬립기구 천이 현상 해석)

  • Lee H.S.;Chang Y. W.;Bang W.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.535-539
    • /
    • 2004
  • Although magnesium has high potential for structural material due to the lightweight and high specific strength, the structural application has been limited by the low ductility at room temperature. The reason of the poor ductility is few activated slip systems of magnesium (HCP structure) during deformation. As temperature increases, however, additional non-basal slip systems are incorporated to exhibit higher ductility comparable to aluminum. In the present study, a series of tensile tests of Mg-Al alloy has been carried out to study deformation behavior with temperature variation. Analysis of load relaxation test results based on internal variable approach gave information about relationship between the micromechanical character and corresponding deformation behavior of magnesium. Especially, the material parameter, p representing dislocation permeability through barriers was altered from 0.1 to 0.15 as the non-basal slip systems were activated at high temperature.