• Title/Summary/Keyword: Sling Bridging Exercise

Search Result 13, Processing Time 0.026 seconds

Comparison of Tension According to the Type of Sling Cord during the Bridging Exercise with Sling in Stroke Patients (뇌졸중 환자의 교각 운동 시 슬링 줄의 종류에 따른 장력 비교)

  • Jang, Gwonuk;Chang, Jongsung
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.29 no.2
    • /
    • pp.189-194
    • /
    • 2019
  • Objectives The purpose of this study was to examine comparison of tension according to the type of sling cord during the bridging exercise with sling in stroke patients. Methods Twenty six stroke patients were recruited for this study. Subjects were randomly performed sling bridging exercise with three types of sling cords such as nonelastic cord with affected side-nonelastic cord with non affected side (NC-NC), nonelastic cord with affected side-elastic cord with non affected side (NC-EC), and elastic cord with affected side-nonelastic cord with non affected side (EC-NC). They were measured tension with a tensiometer of sling cord during the bridging exercise with sling. Results The tension of sling cord was significantly different in affected side, non affected side, and tension ratio of affected side/non affected side. There were significant differences tension in NC-EC from NC-NC and EC-NC and the NC-EC method was increased tension of affected side and decreased tension of non affected side. Conclusions These results showed that the NC-EC method was improved the symmetry of affected side and non affected side. Sling exercise with appropriate type of sling cord should be increased activities of affected side and improved recovery in stroke patients.

The Effects of Sling Bridging Exercise to Pain Scale and Trunk Muscle Activity in Low Back Pain Patients

  • Jeong, Eun Dong;Chae, Chang Woo;Yun, Hong Kyu;Woo, Kwang Seog;Kim, Dong Hyun;Kim, Seung Min
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.4 no.1
    • /
    • pp.523-531
    • /
    • 2013
  • Most patients with chronic low back pain experience functional disability of trunk muscle, and limitations in physical activity. While there are many types of exercise programs available, in recent years sling exercise has been emerging as the exercise program for spinal stabilization. It has been supported by a great amount of research with positive findings on its effectiveness. This research studies the effects of bridging exercise, conducted on a sling, on pain level and trunk muscle activation in supine, sidelying, and prone positions during a 4 weeks period. 10 healthy people(normal group, n=10) and 28 patients with low back pain participated in this study. 28 patients were divided into two groups; one group participated in exercise with the sling(experimental group, n=14) and the other group exercised without the sling(control group, n=14). They were asked to use the Numerical Rating Scale(NRS) to answer to the level of their pain they felt (no pain: 0 point, severe pain: 10 points). During sling bridging exercises, the muscle activity level in each muscle measured in each position was standardized as three seconds of EMG signals during five seconds MVIC. In conclusion, the experimental group with four weeks of sling bridging exercise experienced a statistically significant reduction in the pain level(p<.05) and increase in the muscle activities of erector spinae when in supine position, internal oblique when in sidelying position, and rectus abdominis in prone position(p<.05). Regular sling bridging exercise reduces the low back pain and enhances other trunk muscle activation, thereby positively affect spinal stabilization.

Comparison of Abdominal Muscle Thickness Using Ultrasound Imaging During Bridging Exercises With a Sling and Ball in Healthy Young Adults

  • Moon, Young;Choi, Jong-duk
    • Physical Therapy Korea
    • /
    • v.27 no.1
    • /
    • pp.87-92
    • /
    • 2020
  • Background: Bridging exercises are used to enhance the functional stability of the lumbopelvic region in clinical settings. Although most of the studies on bridging exercises have compared the complete activation of the trunk muscles, some recent studies have examined the functional stability of the trunk and the lumbopelvic region and assessed the appropriate recruitment of the local and global muscles during different task levels. Objects: The purpose of this study was to investigate the changes in muscle thickness in the transverse abdominis (TrA), internal oblique (IO), and external oblique (EO) muscles during a common bridging exercise on an unstable surface and to determine whether these changes differ based on the surface used. Methods: Twenty-five healthy young adults (8 males, 17 females) were recruited. The subjects were randomly assigned to either the exercise progression with a sling bridge group or the ball bridging exercise progression group, each with three stages of increasing difficulty. Each position was measured three times with an ultrasonic diagnostic imaging system, and the mean values were recorded for analysis. Results: No significant differences were observed between the TrA, IO, or EO muscle thickness ratios between the sling and ball exercise groups (p > 0.05). There were also no significant differences in the EO muscle thickness ratios between the tasks irrespective of whether the sling or ball was used. However, the TrA and IO thickness ratios in both groups were significantly greater during stages 2 and 3 compared to stage 1. Conclusion: The results suggest that the use of slings and balls during bridging exercises is effective in activating the deep abdominal muscles.

The Effects of the Sling Strap Height on Trunk and hip Muscle Activation During the Bridging Exercise with Sling

  • Kim, Kwang-Su;Shin, Hwa-Kyung
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.59-63
    • /
    • 2016
  • Purpose: The objective of this study was to identify determine the effect of the strap height on muscular activity of trunk and lower limbs muscles during bridging exercise with a sling. Methods: The subjects of the study were 17 healthy male adults. In order to For measurement of muscular activity, body surfaces electrodes were placed on areas including erector spinae, multifidus muscles, gluteus maximus, and hamstring and the results was were recorded based on three different heights of strap, which are Levels 1, 2, and 3. Results: The muscular activities in erector spinae, multifidus muscle, and gluteus maximus were significantly different in at all three heights (p<0.05)., Level 3 showed the highest the compared to Levels 1 and 2. In hamstring muscle, there was significant difference in levels 1 and 2, also and levels 1 and 3 (p<0.05),. Bbut there was no significant difference between 2 and 3. The ration of muscular activities in multifidus muscles/erector spinae and gluteus maximus/hamstrings were significantly different for all three strap heights (p<0.05). Also, Level 3 showed higher than 1 or 2. Conclusion: The results of this study suggests to adjustment of the level III, that which has high activity level of multifidus and gluteus maximus affecting trunk stability during bridging exercise using a sling.

The effects of performing a one-legged bridge with use of a sling on trunk and gluteal muscle activation

  • Cho, Minkwon;Bak, Jongwoo;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.2
    • /
    • pp.70-77
    • /
    • 2016
  • Objective: The purpose of this study was to compare the activation of trunk and gluteal muscles during bridge exercises with a sling (BS), single-legged bridge exercise with a sling (SBS), single-legged bridge exercise (SB), and general bridge exercise (GB). Design: Cross-sectional study. Methods: Twenty-five healthy participants (19 males and 6 females, aged 27.8 [4.78]) voluntarily participated in this study. In the bridging exercise, each subject lifted their pelvis with their legs and feet in contact with the sling or normal surface. The electrical activities of the erector spinae (ES), gluteus maximus (GM), external oblique (EO), and internal oblique (IO) muscles during the bridging exercises on the 2 surfaces were measured using surface electromyography. Subjects practiced each of the four bridge condition three times in random order and average values were obtained. Results: On the ipsilateral side, activities of the IO, EO, and ES during SBS was significantly higher than those during BS, SB, and GB (p<0.05). Activities of the IO and EO during SB was significantly higher than those during BS and GB (p<0.05). On the contralateral side, activities of the GM and EO during SB and SBS was significantly higher than that during BS and GB (p<0.05). These results verify the theory that the use of sling and single leg lift increases the activation trunk and gluteal muscles during bridging exercises. Conclusions: The single-legged bridge exercise with a sling can be recommended as an effective method to facilitate trunk and gluteal muscle activities.

Effects of Bridging Exercise using Vibration Stimulation and ADIMs on the Lengthening and Thickness of Transversus Abdominis in Healthy Adults

  • Kong, Kwan-Woo
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.6
    • /
    • pp.393-397
    • /
    • 2016
  • Purpose: This study was conducted in an effort to determine the effects of various abdominal drawing-in maneuver (ADIM) on the thickness and length of the transversus abdominis (TrA) when using lumbar stabilization exercises on healthy adults. Methods: 72 healthy adults were divided into four groups of 18 subjects each, to which different ADIM methods were applied. 1) a simple ADIM exercise, 2) an ADIM with pressure bio-feedback units, 3) an ADIM exercise with sling, and 4) an ADIM exercise with sling and vibration. Changes in the thickness and sliding length of TrA were measured when ADIM was conducted in the supine position prior to exercise and again when beginning the exercises. Following exercise, changes in the thickness and sliding length of TrA were measured using the same methods. Differences in group measurements prior to and following exercise were compared using a one-way analysis of variance. A paired t-test was applied to compare the before and after differences within each group. Results: Differences in TrA thickness change revealed that the ADIM exercise with sling and vibration group showed a significant difference in measurements taken prior to and following exercise. Differences in TrA length change revealed that the ADIM exercise with sling and vibration group showed a significant difference in measurements taken prior to and following exercise. Conclusion: ADIM exercise with vibration stimulation conducted in the bridge posture while in a prone position using a sling can be recommended as an effective exercise to improve the function of lumbar TrA.

The Effects of a Bridging Exercise Applying Changes in the Base of Support for the Shoulders on Trunk Muscle Activation

  • Lee, Tae-Gyu;Park, Chan-Hyun;Son, Ho-Hee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.11 no.3
    • /
    • pp.97-104
    • /
    • 2016
  • PURPOSE: Bridge exercise is widely used in rehabilitation exercise for trunk stabilization through various applications in clinical practice. However, there is a lack of studies changing the base of support for the shoulders. The purpose of this study is to investigate the changes in the base of support for the shoulders of trunk muscle activation during bridge exercise. METHODS: 20 healthy subjects (10 men, 10 women) in their twenties were participated in this study. They performed 5 bridge exercises (bridge exercise with their shoulders on a stable table (1/2 knee height, knee height), and on a sling (1/2 knee height, knee height), conventional bridge exercise. The surface electromyography were used for rectus abdominis (RA), internal oblique (IO), external oblique (EO), and erector spinae (ES). RESULTS: During bridge exercise that their shoulders on the sling of 1/2 knee height, the RA, EO, IO muscle activities were significant increased. And during bridge exercise that their shoulders on the stable surface of knee height, the IO/RA ratio were higher than other positions but there were no significant difference between positions for EO/RA, IO/RA ratio. CONCLUSION: Based on this result, using various bases of support and changing the height of bridging exercise may be used to provide effective trunk stabilization exercises.

The Effects of Performing a One-legged Bridge with Hip Abduction and Unstable Surface on Trunk and Gluteal Muscle Activation in Healthy Adults

  • Bak, Jong-Woo;Cho, Min-Kwon;Chung, Yi-Jung
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.3
    • /
    • pp.205-211
    • /
    • 2016
  • Purpose: This study investigated the influence of muscle activity of the trunk and lower limb during a bridge exercise using a unstable surface and during one-legged bridge hip abduction in healthy adults. Methods: Nineteen healthy participated in this study (12 males and 7 females, aged $29.0{\pm}5.0$). The participants were instructed to perform the bridge exercises under six different conditions. Trunk and lower limb muscle activation, such as the erector spinae (ES), gluteus maximus (GM), external oblique (EO), and internal oblique (IO), was measured using surface electromyography. The six different bridge exercise conditions were conducted randomly. Data analysis was performed by using the mean scores after three trials of each condition. Results: On the ipsilateral side, muscle activity of the IO, EO, and ES during the hip abduction condition (Single-legged hip abduction bridge, Bridge with use of a ball and single-leg hip abduction, Bridge with use of a sling and single-leg hip abduction) was significantly higher than those during Unstable surface (Bridge with use of a ball, Bridge with use of a sling) and General bridging exercise (p<0.05). In the contralateral side, activities of the GM and EO during Single-legged hip abduction bridge, Bridge with use of a ball and single-leg hip abduction and Bridge with use of a sling and single-leg hip abduction was significantly higher than that during Bridge with use of a ball, Bridge with use of a sling and General bridging exercise (p<0.05). Conclusion: This study demonstrated that performing a bridge exercise with use of a sling and single-leg hip abduction had an effect on trunk and gluteal muscle activation. The findings of this study suggest that this training method can be clinically effective for unilateral training and for patients with hemiplegia.

Effect of the Sling Exercise With Abdominal Drawing-In Maneuver on Thickness of Abdominal Muscles in Young Women (복부 드로우-인 기법을 동반한 슬링 운동이 젊은 여성의 복부 근육들의 두께에 미치는 영향)

  • Park, Ki-suk;Kwon, Hyun-sook;Park, In-ho;Son, Seong-min
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Purpose: The purpose of this study was to explore the influence of a sling suspension exercise with abdominal drawing-in maneuver (ADIM) on the thickness of abdominal muscles. Method: Twenty healthy young women volunteered for this study, and they were randomly assigned to either the control group or experimental group. Subjects of both groups performed the ADIM in standard method. And subjects of the experimental group underwent a structured sling exercises additionally, which consists of bridging exercise on supine, elbow support and trunk control exercise on prone, and trunk flexion exercises. The exercises were performed thirty minutes per day, 3 times a week for a 4-week period. Thickness of abdominal muscles (transverse abdominis; TrA, internal obliques; IO and external obliques; EO) was measured by using real-time ultrasonography. Results: After the intervention, subjects of the experimental group appeared to be significantly increased for the thickness of the TrA (p<.05). However, significant difference weren't found for the IO and EO (p>.05). Conclusion: These findings suggest that sling suspension exercise with the ADIM may be favorably used to augment trunk stabilizing effort by increasing TrA thickness. Further studies need in this field.

  • PDF

Comparison of Lower Extremity Muscle Activity According to Ankle Angle during Sling Bridge Exercise in Patients with Patellofemoral Pain Syndrome

  • Jonghoon An;Jihye Jung;Jinhyung Choi;Seungwon Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 2023
  • Objective: This study attempted to compare the effects of bridge exercise using a sling according to the angle of the ankle to confirm the effective lower extremity muscle activation posture of patients with patellofemoral pain syndrome(PFPS). Design: Cross-sectional study Methods: Seventeen patients with PFPS were recruited and the muscle activities of the vastus medialis, vastus lateralis, rectus femoris, and gluteus maximus were measured according to the ankle position (dorsiflexion, neutral, plantar flexion). After measuring the maximum number of isometric contractions of vastus medialis, vastus lateralis, rectus femoris, and gluteus maximus, bridging exercise using a sling according to each ankle posture was applied to measure lower extremity muscle activity. The evaluation was performed 3 times for 10 seconds. The three ankle postures were randomly performed and the average values were compared. Results: As a result of this study, the vastus medialis muscle showed high muscle activity in the order of dorsiflexion, plantar flexion, and neutral position bridge exercise (p<0.05). And the vastus lateralis showed high muscle activity in the order of dorsiflexion, neutral, and plantar flexion (p<0.05). However, rectus femoris and gluteus maximus did not show significant muscle activity according to the ankle posture, but muscle activity was highest in the dorsiflexion posture. Conclusions: As a result of this study, muscle activity was high in the order of vastus medialis and vastus lateralis during ankle dorsiflexion. This is thought to be a major factor that can be applied in various ways in clinical practice according to the ankle angle when treating PFPS patients.