• Title/Summary/Keyword: Sliding shaft

Search Result 51, Processing Time 0.023 seconds

A Study on Development of Automatic Agricultural Machinery for Onions Harvest (전자동 양파수확용 농기계 개발에 관한 인구)

  • 이진구;윤복현;박창언;김일수;성백섭;안영호;김인주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.544-547
    • /
    • 2002
  • According to the rising of national economic level. domestic consumption of vegetables having high additive values is increased continuously due to increased consumption of meat in last decade. These vegetables are produced almost in this country and are limited to import from neighbor countries in due of high transportation expenses for storing in refrigerated container. It is very important to mechanize the harvest work, forming more than 30% for their production cost, in order to cultivate variable vegetables at the same time according to their harvesting seasons. In this state its former harvest methods, with using of human power or semi-automatic harvest, caused to increase their production cost due to high labor cost and low working efficiency. The former onion harvest being operated almost by semi-automatic plant distributer mechanism have many limit and troublesome for cultivation spaces, vinyle mulched ridge, gravel mixture in soil. Therefore, it is necessary to develope a fully automatic and self-running situation and overcome above handicaps, even in the farm covered with vinyle house or mulch sheets. This newly developed onion harvest can be applied to plant various young trees and will be able to export together with onion haying their competition in the worldwide market in which the culinary vegetable method or farm conditions is similar to our country.

  • PDF

Fully Unstructured Mesh based Computation of Viscous Flow around Marine Propellers (비정렬격자를 이용한 프로펠러 성능 및 주위 유동해석)

  • Kim, Min-Geon;Ahn, Hyung Taek;Lee, Jin-Tae;Lee, Hong-Gi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.162-170
    • /
    • 2014
  • A CFD(Computational Fluid Dynamics) analysis is presented to predict hydrodynamic characteristics of a marine propeller. A commercial RANS(Reynolds Averaged Navier-Stokes equation) solver, namely FLUENT, is utilized in conjunction with fully unstructured meshes around rotating propeller. Mesh generation process is greatly accelerated by using fully unstructured meshes composed of both isotropic and anisotropic tetrahedral elements. The anisotropic tetrahedral elements were used in the flow domain near the blade and shaft, where the viscous effect is important, having complex shape yet resolving the thin boundary layers. For other regions, isotropic tetrahedral elements are utilized. Two different approaches simulating rotational effect of the propeller are employed, namely Moving reference frame technique for steady simulation, and Sliding mesh technique for unsteady simulation. Both approaches are applied to the propeller open water (POW) test simulation. The current results, which are thrust and torque coefficients, are compared with available experimental data.

A Study on the Evaluation of the Friction and Wear Properties for Normalized Ductile Cast Iron (노멀라이징 열처리한 구상 흑연 주철의 마찰.마모특성 평가에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.440-446
    • /
    • 1999
  • This study is mainly concerned with the friction and wear properties for the specimens of crank shaft which are made of ductile cast iron. The friction and wear tests were carried out for the nor-malized ductile cast iron specimens and their properties were compared with each other at reheat-ing temperatures(550^{\circC,\; 600^{\circ}C,\; 650^{\circ}$) and in dry condition at different friction velocity(0.94 m/s 1.88m/s 2.83m/s) range. After austenized at $910^{\circ}C$ it is observed that the higher the reheating temperature is the hardness becomes decrease which is supposedly attributed to the fact that the amount of pearlite austenite matrix is rduced by reheating after normalizing and that as the reheating temperature goes up the pearlite generated is less and the interval between the pearlites were widened at last to make pearlite globular. At the low velocity the friction coefficient increase in the beginning and gets stabilized as the sliding distance increases. As the friction velocity grows the friction coefficient decreases suppos-edly since the abrasive wear is heavier at low velocity than at the high velocity as the friction tem-perature at low velocity is lower than at high velocity.

  • PDF

Fretting Fatigue Behavior of High Strength Aluminum Alloys (고강도 알루미늄 합금의 프레팅 피로거동)

  • Choi, Sung-Jong;Lee, Hak-Sun;Lee, Cheol-Jae;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.197-204
    • /
    • 2007
  • Fretting is a contact damage process that occurs between two contact surfaces. Fretting fatigue reduces fatigue strength of the material due to low amplitude oscillatory sliding and changes in the contact surfaces of strongly connected machine and structure such as bolt, key, pin, fixed rivet and connected shaft, which have relative slip of repeatedly extreme low frequency amplitude. In this research, the fretting fatigue behavior of 2024-T3511 and 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were experimentally estimated. Based on this experimental wort the following results were obtained: (1) A significant decrease of fatigue lift was observed in the fretting fatigue compared to the plain fatigue. The fatigue limit of 2024-T3511 aluminum alloy decreased about 59% while 7050-T7451 aluminum alloy decreased about 75%. (2) In 7050-T7451 specimen using ATSI4030 contact pad, crack was initiated more early stage than using 2024-T3511 contact pad. (3) In all specimens, oblique cracks were initiated at contact edge. (4) Tire tracks and rubbed scars were observed in the oblique crack region of fracture surface.

Hydrodynamic characteristics of X-Twisted rudder for large container carriers

  • Ahn, Kyoung-Soo;Choi, Gil-Hwan;Son, Dong-Igk;Rhee, Key-Pyo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.322-334
    • /
    • 2012
  • This paper shows the numerical and experimental results about the hydrodynamic characteristics of X-Twisted rudders having continuous twist of the leading edge along the span. All the results were compared with those of the semi-balanced rudder. Calculation through the Reynolds-Averaged Navier-Stokes Equation (RANSE) code with propeller sliding meshes shows large inflow angle and fast inflow velocity in the vicinity of ${\pm}0.7$ R from the shaft center, so it may cause cavitation. Also, X-Twisted rudder has relatively small inflow angles along the rudder span compared with semi-balanced rudder. For the performance validation, rudders for two large container carriers were designed and tested. Cavitation tests at the medium sized cavitation tunnel with respect to the rudder types and twisted angles showed the effectiveness of twist on cavitation and the tendency according to the twist. And the resistance, self-propulsion and manoeuvring tests were also carried out at the towing tank. As a result, in the case of X-Twisted rudder, ship speed was improved with good manoeuvring performance. Especially, it was found out that manoeuvring performance between port and starboard was well balanced compared with semi-balanced rudders.

High Speed and High Precision Control of Linear Voice Coil Motor for Optical Disc (광 저장장치용 리니어 보이스 코일 모터의 고속, 고정밀 위치제어)

  • Kim, Se-Woong;Jun, Hong-Gul;Park, No-Chul;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.754-758
    • /
    • 2000
  • In recent years, the LDM(Linear DC Motor) is widely used, because it has more merits than other rotary motors. First, if system requires linear motion, LDM realizes direct linear motion as rotary motor does not. Second, system is simple and easy to control, and so on. In optical disc drive, a tracking system consists of two parts. One is fine actuating and the other is coarse actuating. For coarse actuating VCM(Voice Coil Motor) actuator is used as a basic drive mechanism. In this paper, MC(Moving Coil) type LDM is designed, manufactured and controlled. System is composed of mechanical-electromagnetic component, therefore mechanical loss and electromagnetic loss exist. The dominent mechanical loss is friction which results from sliding between guide shaft and hole. Therefore, this paper shows the friction compensation control. High speed and accurate position is not gained only PID control, therefore other control method is applied to the system.

  • PDF

Effect of Oil Groove Shapes on the Characteristic of the Flow Rate at the Journal Bearing with Vertical Type (수직형 저널 베어링의 유량특성에 대한 그루브 형상의 영향)

  • Jeong, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1664-1670
    • /
    • 2015
  • As journal bearing has a sliding motion between the shaft and bearing with lubricating oil, it produces a hydrodynamic lubrication condition. Journal bearing can receive a large force because it takes a distributed load at the large friction face. As the oil groove or oil hole is made in the journal bearing surface for the journal bearing smoothly working under a hydrodynamic lubrication condition, sufficient lubricating oil is supplied through the clearance of journal bearing. The performance of the journal bearing is changed according to the shapes, sizes and positions of an oil groove. In this paper, the flow rate according to the oil groove shapes (triangle, semicircle and rectangle) among the various oil supply conditions was measured. The shape that discharges the highest flow rate was observed and the groove shape of optimal performance for the journal bearing was determined. The results showed that the flow rate increases with decreasing operating temperature, the influence of temperature on the flow rate decreased with increasing rotational speed, and flow rate in the triangular groove shape was greater than in other shapes.

A Study for the Screen Door Motor System Driving Stiffness of Dynamic Load Condition (스크린 도어 모터 시스템의 동하중 상태 구동강성 검증)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.164-170
    • /
    • 2016
  • The initial urban railway was only required to perform its role as means of transportation. As the time of staying in an underground platform was extended, it has been faced with the issues of environmental improvement as a living space. Therefore, the sliding automatic door, which is the basis of the screen door, is used widely for large distribution stores, hospitals, restaurants, and public offices for customers' convenience and as a convenient method to control access. Therefore, screen doors are required for the purpose of customers' convenience, securing safety, establishing pleasant station buildings, and energy savings. It would be also necessary to develop the optimal design technology for a screen door system through the design of element parts and to ensure reliability. Therefore, this paper calculated, interpreted, and verified the theoretical weight of the composition parts to verify the design drive hardness of the motor for screen doors necessary for the safety of subways.

A Study of Wear Behavior for Sealing Graphite at Elevated Temperature (씰링 그라파이트의 고온 마모 거동에 관한 연구)

  • Kim, Yeonwook;Kim, Jaehoon;Yang, Hoyoung;Park, Sunghan;Lee, Hwankyu;Kim, Bumkeun;Lee, Seungbum;Kwak, Jaesu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.113-120
    • /
    • 2013
  • Graphite is commonly used as a solid lubricant leading to low friction coefficient and abrasion. In this study, wear behavior of sealing graphite(HK-6) at elevated temperature was evaluated. Reciprocating wear test was carried out as wear occurred graphite as a seal(HK-6) is positioned between the liner and driving shaft. Variables which are temperature, sliding speed and contact load are set. This study suggest optimized environment conditions through the wear properties of graphite.

Evaluation of Fretting Fatigue Behavior of Aluminum Alloy(A17050-T7451) Under Cyclic Bending Load (알루미늄 합금(AI7050-T7451)의 반복 굽힘 하중하의 프레팅 피로거동 평가)

  • Kim, Jong-Sung;Yoon, Myung-Jin;Choi, Sung-Jong;Cho, Hyun-Deog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.25-34
    • /
    • 2010
  • Fretting damage reduces fatigue life of the material due to low amplitude cyclic sliding and changes in the contact surfaces of strongly connected machine and structures such as bolt, key, fixed rivet and connected shaft, which have relative slip of repeatedly very low frequency amplitude. In this study, the fretting fatigue behavior of 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were evaluated. The plain fatigue test and fretting fatigue test under cyclic bending load carried out commercial bending fatigue tester and specially devised equipments to cause fretting damage. From these experimental work, the following results obtained: (1) The plain fatigue limit for stress ratio R=-l was about 151MPa. (2) In case of fretting fatigue, fatigue limit for stress ratio R=-l about 72MPa, the fatigue limit for R=0 about 81MPa, and the fatigue limit for R=0.3 about 93MPa. (3) The fatigue limit reduction rates by the fretting damage were about 52%(R=-1), 46%(R=0) and 38%(R=0.3) respectively. (4) The fatigue limit reduction rate decreased with stress ratio increase. In fretting bending test, as stress ratio increased, occurrence of initial oblique crack by fretting decreased or phased out, so that fracture surfaces were formed by plain fatigue crack occurrence, and such tendency was notable as stress amplitude increased. (5) Tire tracks and rubbed scars were observed in the fracture surface and contacted surface.