• Title/Summary/Keyword: Sliding rail system

Search Result 34, Processing Time 0.024 seconds

Evaluation of Dynamic Behavior of Rail Joints on Personal Rapid Transit Track (소형무인경전철(PRT)궤도 레일이음매의 동적거동 분석)

  • Choi, Jung-Youl;Kim, Jun-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.89-94
    • /
    • 2016
  • The objective of this study was to estimate the dynamic behavior of a personal rapid transit(PRT) track system using a rail of rectangular tube section and a rail joint of sliding type, and to compare the results with the normal rail and rail joint of a PRT track system by performing field measurements using actual vehicles running along the service lines. The measured vertical displacement of rail and sleeper, and vertical acceleration of rail for the normal rail and rail joint section were found to be similar, and the rail joint of sliding type satisfied the design specifications of the track impact factor for a conventional railway track. The experimental results showed that the overall dynamic response of the rail joint were found to be similar to or less than that of the normal rail, therefore the rail joint of sliding type for PRT track system was sufficient to ensure a stability and safety of PRT track system.

Development of Single Slide-Rail System for Reduction of Unbalanced Sliding Motion (좌우유동 방지를 위한 대용량 단일 슬라이드 레일 시스템 개발)

  • Kim, Min-Hoon;Park, Ki-Hong;Jeong, Won-Chul;Ye, Sung-Bong;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.490-495
    • /
    • 2011
  • A slide-rail system is widely used in home appliances, furniture, mechanical rigs, and so many other applications; due to its high strength and performance for easy moving heavy objectives. In general, a pair of side slide-rails is set on both sides of a drawer to support and move it. So an unbalanced sliding motion can occur during opening and closing a drawer with pull and push force. To settle this problem, single central slide-rail having three collapsible rail-bodies was firstly proposed in this work. 'H'-beam shaped rail-body was newly designed to have enough bending and twisting strength. The experimental test showed that the proposed rail could be applied to large-size home appliances for easy moving drawer with heavy weight.

Shape Design of the U-Type Wedge of the Rail Clamp for a Container Crane (컨테이너 크레인용 레일클램프의 U형 쐐기 형상설계)

  • Han, D.S.;Han, G.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.117-122
    • /
    • 2009
  • The wedge type rail clamp compresses the rails with small clamping force at first, and with large clamping force when the wind speed increases because of the wedge working. If the supporter is not installed in the rail clamp with V-type wedge when the wind speed increases more and more, the structure will occur overload which leads the structure to fracture. But in the clamp with U-type wedge the supporter is not necessary because the tangential angle of the wedge increases as the sliding distance increases. The proper shape of U-type wedge is determined by the initial clamping force and the tangential angle of the wedge. Accordingly we, first carry out the finite element analysis in order to analyze the relation between the sliding distance and the wedge angle. Next we suggest the proper shape of U-type wedge as analyze the relation between the radius of curvature and the sliding distance.

  • PDF

Dynamic Model of an HSDI Common-rail Injector and Injection Rate Estimation (HSDI 커먼레일 인젝터 동적 모델 및 분사율 추정)

  • 남기훈;박승범;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.43-49
    • /
    • 2003
  • The common-rail fuel injection system is becoming a common technology for High Speed Direct Injection(HSDI) diesel engines. The injection timing and rate are important factors for combustion control and pollutants formation mechanisms during engine operation. This paper introduces an estimation methodology of the injection timing and rate of a common-rail injector for HSDI diesel engines. A sliding mode observer that is based on the nonlinear mathematical model of the common-rail injector is designed to overcome the model uncertainties. The injector model and the estimator we verified by relevant injection experiments in an injector test bench. The simulation and the experimental results show that the proposed sliding mode observer can effectively estimate the injection rate of the common-rail injector.

A Study on the Injection Rate Observer of the Piezo-actuated and Solenoid-operated Injectors for CRDI Diesel Engines (직분식 커먼레일 디젤엔진의 피에조 인젝터와 솔레노이드 인젝터의 연료분사율 추정)

  • Sa, Jong-Seong;Chung, Nam-Hoon;SunWoo, Myoung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.52-59
    • /
    • 2007
  • Fuel injection system greatly affects the performance of a direct injection diesel engine. A common rail injection system was introduced to satisfy the stringent emission standards, low fuel consumption, and low noise in recent years. The performance of a common-rail fuel injection system is strongly influenced by the injector characteristics. The common rail injector has evolved in order to improve its injection performance. The piezo-actuated injector is more suitable for common rail injection system due to its fast response and is expected to replace current solenoid-operated injector. In this study, nonlinear mathematical models are proposed for the solenoid-operated and the piezo-actuated injectors for control applications. Based on these models, the injection rate, which is one of the most important factors for the injection characteristics, is estimated using sliding mode observer. The simulation results and the experimental data show that the proposed sliding mode observers can effectively estimate the injection timing and the injection rate for both common-rail injectors.

Effective Methods Reducing Joint Vibration and Elongation in High speed Rail Bridge (고속철도교 신축부의 진동 및 신축의 효율적인 저감 방안)

  • Min, Kyung-Ju;Kang, Tae-Ku;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.800-806
    • /
    • 2011
  • Thermal expansion which occurs at the high speed rail joint is proportional to the free length from the point of fixity. This thermal expansion behaves similar to free expansion because the girder longitudinal stiffness is much larger than longitudinal resistance of rail pads. But the longitudinal displacement in the long rail is nominal because the longitudinal support condition of the girder is normally MFM(movable-fix-movable) system. Due to these girder expansion characteristics, there is longitudinal relative displacement at the rail pad and rail fastener spring which connects rail and girder. If the relative displacement between rail and girder is beyond the elastic limit for the rail pad, rail fastener system shall be applied using sliding fastener to prevent rail pad damage and fastener separation resulting from slip. On the other hand, train vertical vibration and tilting can occur due to the lack of fastener vertical force if the sliding fastener is applied at the girder joint. In the high speed rail bridge, vibration can occur due to the spring stiffness of the elastomeric bearing, also both vertical downward and upward displacement can occur. The elastomeric bearing vertical movement can cause rail displacement and finally the stability of the ballast is reduced because the gravel movement is induced.

  • PDF

Comparative Analysis of Track-Bridge Interaction of Sliding Slab Track and Rail Expansion Joint for Long-Span Railway Bridge (장경간 철도 교량에 적용된 슬라이딩 궤도와 레일신축이음장치의 궤도-교량 상호작용 비교)

  • Lee, Kyoung Chan;Jang, Seung Yup;Lee, Jungwhee;Choi, Hyun Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.169-177
    • /
    • 2016
  • Sliding slab track system, which consists of low friction sliding layer between track slab and bridge deck, is recently devised to reduce track-bridge interaction effect of continuously welded rail(CWR) without applying special devices such as rail expansion joint(REJ). In this study, a series of track-bridge interaction analyses of a long-span bridge with sliding slab track and REJ are performed respectively and the results are compared. The bridge model includes PSC box girder bridge with 9 continuous spans, and steel-concrete composite girder bridge with 2 continuous spans. The total length of the bridge model is 1,205m, and the maximum spacing between the two fixed supports is 825m. Analyses results showed that the sliding slab track system is highly effective on interaction reduction since lower rail additional axial stress is resulted than REJ application. Additionally, horizontal reaction forces in fixed supports were also reduced compared to the results of REJ application. However, higher slab axial forces were developed in the sliding slab track due to the temperature load. Therefore, track slab section of the sliding slab track system should be carefully designed against slab axial forces.

A study on the performance increasing of current collecting system with a sliding contact (슬라이딩 접촉에 의한 집전시스템의 성능향상의 연구)

  • Jeong, R.G.;Kim, Y.S.;Yoon, Y.Ki.;Park, S.H.;Chung, S.G.;Lee, B.S.;Mok, J.Y.;Choi, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.455-457
    • /
    • 1999
  • In this paper, the wearing characteristics of current collecting shoes, interruption phenomena and contact resistances between collecting shoes and conductor rails are established as design parameters for development of the third rail current collector. An experimental analysis for established design parameters is performed as the materials of current collector shoe, contact force, sliding velocity and contact condition(dry/wet condition) between current collectors shoe and conductor rails. As a result of this study, the magnitude of contact force is in proportion to the amount of wear in the collecting shoe, but is in inverse proportion to the interruption and contact resistance between the collecting shoe and the conductor rail. And optimal values of design parameters are pre sented through analyzing the experimental results of the amount of wear, interruption and contact resistance.

  • PDF

Evaluation of Stress Reduction of Continuous Welded Rail of Sliding Slab Track from Track-Bridge Interaction Analysis (궤도-교량 상호작용 해석에 의한 슬라이딩 슬래브 궤도의 장대레일 응력 저감 효과 분석)

  • Lee, Kyoung Chan;Jang, Seung Yup;Jung, Dong-Ki;Byun, Hyung-Kyoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1179-1189
    • /
    • 2015
  • Continuous welded rail on bridge structure experiences typically a large amount of additional longitudinal axial forces due to longitudinal track-bridge interaction under temperature and traction/braking load effect. In order to reduce the additional axial forces, special type of fastener, such as ZLR and RLR or rail expansion joint should be applied. Sliding slab track system is known to reduce the effect of track-bridge interaction by the application of a sliding layer between slab track and bridge structure. This study presents track-bridge interaction analysis results of the sliding slab track and compares them with conventional fixed slab track on bridges. The result shows that the sliding slab track can significantly reduce the additional axil forces of the continuously welded rail, and the difference is more significant for long and continuous span bridge.

A Guideline for Development of Track-Bridge Structural System with Sliding Layer to Reduce the Track-Bridge Interaction (궤도-교량 상호작용 저감을 위한 슬라이드 층이 고려된 궤도-교량 구조시스템의 개발 방향)

  • Yun, Kyung-Min;Choi, Shin-Hyung;Song, Dae-Seok;Lee, Kyung-Chan;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1469-1476
    • /
    • 2015
  • The bridges take a significant part of entire route in Korea railway, because 70% of Korean territory is covered with mountains. For this reason, span enlargement of railway bridges is more advantageous to increase economic efficiency on the bridge design. However there are many limitations such as additional axial force of the rail, excessive displacement due to track-bridge interaction. In this study, track-bridge interaction analysis was conducted considering the sliding layer which was installed between the track and girder. From the numerical analysis results, the behavior of track-bridge interaction was investigated according to the installation method of sliding layer. Finally, a guideline for development of track-bridge structure system to reduce the track-bridge interaction was proposed.