• Title/Summary/Keyword: Sliding mode method

Search Result 590, Processing Time 0.03 seconds

Robust speed control of induction motor using sliding mode state observer (슬라이딩모드 상태관측기를 이용한 유도전동기의 강인한 속도제어)

  • Yoon, Byung-Do;Kim, Yooo-Ho;Kim, Choon-Sam;Kim, Chan-Ki;Han, Jae-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.280-282
    • /
    • 1994
  • This paper proposes sliding mode state for robust speed control of induction motor. Sliding mode state observer is robust for measurement noise, modeling-error and load disturbance. The pole of sliding mode state observer can be placed at (0,0) in Z-plane for fast response. This method is, namely, deadbeat control. Sliding mode state observer output is discontinuous on a switching hyperplance, that causes harmful effects such as current harmonics and speed oscillation. In this paper, also the reducing method of the chattering of sliding mode state observer output is proposed. The proposed system is digitally implemented with TMS320C31.

  • PDF

Fuzzy Sliding Mode Control for a Hydraulic Elevator Controlled by Inverter

  • Han, Gueon-Sang;Park, Jae-Sam;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1487-1490
    • /
    • 2002
  • In this paper, a design methodology of fuzzy sliding mode control scheme for a hydraulic elevator controlled by inverter is presented. The proposed scheme uses a fuzzy sliding mode controller(FSMC), which is designed based on the similarity between the fuzzy logic control(FLC) and the sliding mode control(SMC). The proposed method has advantages that the stability and the robustness of the FLC are proved and ensured by the sliding mode control law, and the computation burden could be reduced greatly. The validity and the effectiveness of the proposed control method have been shown through the real world industrial application results.

  • PDF

Sliding Mode Observer for Sensorless Control of IPMSM Drives

  • Jung, Young-Seok;Kim, Marn-Go
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.117-123
    • /
    • 2009
  • This paper presents a sliding mode observer for the sensorless control of interior permanent magnet synchronous motor (IPMSM) drives. The sliding mode observer has been presented as a robust estimation method. Most of these previous works, however, were not for an interior PMSM (IPMSM), but for a non-salient pole PMSM and its observer design is conducted in the stationary reference frame. Thus, in this paper, we investigate the design of a sliding mode observer and its driving characteristics for an IPMSM. The proposed sliding mode observer is designed in the rotating reference frame, and good drive performance is achieved even when the observer parameters are mismatched with those of an actual motor. The proposed method is applied to a 600W IPMSM, and, then, the measurement results are presented.

Adaptive fuzzy sliding mode control for nonlinear systems (비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어)

  • 서삼준;서호준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.684-688
    • /
    • 1996
  • In this paper, to overcome drawbacks of variable structure control system a self-tuning fuzzy sliding mode control algorithm using gradient descent method is proposed. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties in the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to a one-degree of freedom robot arm. The results show that both alleviation of chattering and performance are achieved.

  • PDF

Discrete-time Sliding Mode Control with Input Shaping for flexible systems

  • Woo, Lim-Hyun;Choo, Chung-Chung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.130.5-130
    • /
    • 2001
  • This paper presents a discrete-time sliding mode control method for linear time-invariant systems with matched uncertainties. In this paper, we suggest a method of adding a command generator using input shaping filter to a discrete-time sliding mode controller. We design the number of steps required to reach the sliding layer and the magnitude of a control input, respectively using the shaping filter. Therefore we can minimize the excitation of the resonance mode and increase the tracking performance of a system. Simulation results are included to show its effectiveness.

  • PDF

An LMI Approach for Designing Sliding Mode Observers (슬라이딩 모드 관측기 설계를 위한 선형행렬부등식 접근법)

  • Choi Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.9-12
    • /
    • 2005
  • This paper presents an LMI-based method to design sliding mode observers for a class of uncertain systems. Using LIs we derive an existence condition of a sliding mode observer guaranteeing a stable sliding motion. And we give explicit formulas of the observer gain matrices. We also consider sliding mode observer design problems under an α-stability constraint or an LQ performance bound constraint. Finally, we give a numerical design example.

Design of Optimal Controller Using Discrete Sliding Mode

  • Kim Min-Chan;Ahn Ho-Kyun;Kwak Gun-Pyong;Nam Jing-Rak
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.198-201
    • /
    • 2004
  • In this paper, the discrete optimal control is made to have the robust property of Sliding mode controller. A augmented system with a virtual state is constructed for this objective and noble sliding surface is constructed based on this system. The sliding surface is the same as the optimal control trajectory in the original system. The states follow the optimal trajectory even if there exist uncertainties. The reaching phase problem of sliding mode control is disappear in this method.

An LMI-Based Sliding Mode Observer Design Method for Uncertain Time-Delay Systems (불확실한 시간 지연 시스템을 위한 LMI 기반 슬라이딩 모드 관측기 설계법)

  • Choi Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1018-1021
    • /
    • 2006
  • This paper presents an LMI-based method to design sliding mode observers for a class of uncertain time-delay systems. Using LMIs we derive an existence condition of a sliding mode observer guaranteeing a stable sliding motion. And we give explicit formulas of the observer gain matrices. Finally, we give a simple LMI-based design algorithm, togeter with a numerical design example.

Control of Inverted Pendulum using Fuzzy Sliding Mode Controller (퍼지 슬라이딩 제어기를 이용한 도립진자 제어)

  • Song, Young-Mok;Jung, Byung-Ho;Roo, Chang-Wan;Yoon, Suk-Yul;Yim, Wha-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2759-2761
    • /
    • 2001
  • Sliding mode is a robust control method and can be applied in the presence of model uncertainties and parameter disturbances. But there ane problems in sliding mode controller. Hard in modeling system parameters, chattering, etc. In this paper, new sliding controller design method is proposed for solving the above problems using fuzzy sliding mode contros(FSMC) scheme are considered. we propose that fuzzy logic system are used to approximate unknown system functions in desinging the SMC of Inverted Pendulum. In the method, a fuzzy logic system is utilized to approximate the unknown function f of the nonlinear system. As a simulation result of applying the inverted pendulum, the sliding controller shows good robust characteristics.

  • PDF

Fuzzy-based Hybrid Fuzzy-Sliding Mode Controller for the Speed Control of a Hydraulic Inverter Controller (유압식 인버터 제어기의 속도제어를 위한 퍼지기반 하이브리드 슬라이딩모드 제어기 설계)

  • 한권상;최병욱;안현식;김도현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.218-226
    • /
    • 2003
  • Due to the friction characteristics of pump, cylinder packing and passenger car, in the elevation system actuated with hydraulic inverter, there exist dead zones. which cannot be controlled by a PID controller. To overcome the drawbacks, in this paper, we propose a new hybrid fuzzy-sliding mode control scheme, which controls the controller output between a sliding mode control output and a PID control output by fuzzy control method. The proposed hybrid control scheme achieves an improved control performance by using both controllers. We first propose a design method of the hybrid controller far a hydraulic system controlled by inverters, then propose a design method of a hybrid fuzzy-sliding mode centre] scheme. The effectiveness of the proposed control scheme is shown by simulation results, in which the proposed hybrid control method yields better control performance then the PID controlled scheme, not only in the zero-crossing speed region but also in the overall control region including steady-state region.