• Title/Summary/Keyword: Sliding Multiblock Grid

Search Result 6, Processing Time 0.015 seconds

Optimum Design of Aerodynamic Shape of Cascade with Rotor-Stator Interactions (정익과 동익의 상호작용을 고려한 익렬의 공력 형상 최적 설계)

  • Cho, J. K.;Park, W. G.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.40-45
    • /
    • 2002
  • Since the previous cut-and-try design algorithm requires much cost and time, the automated design technique with the CFD and optimum design algorithm has recently been concerned. In this work, the Navier-Stokes equation was solved to gain more detailed viscous flow information of cascade with rotor-stator interactions. The H-grid embedded by O-grid was generated to obtain more accurate solution by eliminating the branch cut of H-grid near airfoil surface. To handle the relative motion of the rotor to the stationary stator, the sliding multiblock method was applied and the cubic-spline interpolation was used on the block interface boundary. To validate present procedure, the time-averaged aerodynamic loads were compared with experimeatal data. A good agreement was obtained. The Modified Method of Feasible Direction (MMFD) was used to carry out the sensitivity analysis of the change of aerodynamic performance by the changes of the cascade geometry. The present optimization of the cascade gave a dramatic reduction of the drag while the lift maintains at the value within the user-specified tolerance.

Numerical Flow Analysis of Ducted Marine Propeller with Pre-Swirl Guidevane (전치 가이드베인을 가지는 수중 덕트 프로펠러 주위의 전산 유동 해석)

  • Yu Hye-Ran;Jung Young-Rae;Park Warn-Gyu
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.62-69
    • /
    • 2004
  • The present work solved 3D incompressible RANS equations on a rotating, multi-blocked grid system to efficiently analyze ducted marine propulsor with the interaction of propeller guidevane and annular duct. To handle the interface boundary between the guidevane and the propeller, a sliding multiblock technique based on the cubic spline interpolation was applied. To validate the present code, a turbine flow was simulated and the time-averaged pressure coefficients were compared with experiment. After the code validation, the flowfield around a ducted marine propeller with pre-swirl guidevane was simulated.

Numerical Viscous Flow Analysis of Ducted Marine Propeller (Ducted Marine Propeller의 점성 유동 수치 해석)

  • Yu Hye-Ran;Jung Young-Rae;Park Warn-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.188-193
    • /
    • 2003
  • The present work solved 3D incompressible RANS equation on a rotating, non-orthogonal multi-blocked grid system to efficiently analyze ducted marine propulsor with rotor-stator interaction. To handle the interface boundary between a rotor and a stator maintaining the conservative property, the sliding multiblock technique using the cubic spline interpolation and the bilinear interpolation technique were applied. To validate present code, a turbine flow having rotor- stator interaction was simulated. Time averaged pressure coefficients were compared with experiments and good agreement was obtained. After the code validation, the flowfield around a single-stage ducted marine propulsor was simulated.

  • PDF

Flow and Performance Analysis of Waterjet Propulsion System (워터제트 추진시스템의 유동 및 성능 해석)

  • Park Warn-Gyu;Jang Jin-Ho;Chun Ho-Hwan;Kim Moon-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.8-14
    • /
    • 2004
  • The numerical analysis of a waterjet propulsion system was performed to provide detail understanding of complicated flow phenomena including interactions of intake duct, rotor, stator, and contracted discharge nozzle. The incompressible RANS equations were solved on moving multiblocked grid system. To handle interface boundary between rotor and stator, the sliding multiblock method was applied. The numerical results were compared with experiments and good agreement was obtained. The complicated viscous flow features of the waterjet, such as secondary flow inside the intake duct, the recovery of axial flow by the role of the stator, and tip and hub vortex, etc. were well analyzed by the present simulation. The performance of thrust and torque was also predicted.

Propulsive Performance Analysis of Ducted Marine Propulsors with Rotor-Stator Interaction

  • Jang, Jin-Ho;Yu, Hye-Ran;Jung, Young-Rae;Park, Warn-Gyu
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.31-41
    • /
    • 2004
  • A ducted marine propulsor has been widely used for the thruster of underwater vehicles for protecting collision damage, increasing propulsive efficiency, and reducing cavitation. Since a single-stage ducted propulsor contains a set of rotor and stator inside an annular duct, the numerical analysis becomes extremely complex and computationally expensive. However, the accurate prediction of viscous flow past a ducted marine propulsor is essential for determining hydrodynamic forces and the propulsive performances. To analyze a ducted propulsor having rotor-stator Interaction, the present work has solved 3D incompressible RANS equations on the sliding multiblocked grid. The flow of a single stage turbine flow was simulated for code validation and time averaged pressure coefficients were compared with experiments. Good agreement was obtained. The hydrodynamic performance coefficients were also computed.

Numerical Analysis of Wind Turbine of Drag Force Type with change of Blade Number and Pitch Angle (수직항력식 터빈을 이용한 풍력발전 시스템의 형상 변화 및 피치각 변화에 관한 유동해석)

  • Park C.;Park G. S.;Park W. G.;Yoon S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.61-64
    • /
    • 2004
  • To analyze the performance of Wind turbine of the drag force type, 3-D RANS equations were solved by the iterative time marching method on sliding multiblock grid system. The numerical flow simulations by changing blade number and pitch angle were carried out : blade number = 15, 20 circumferentially; pitch angle = $30^{\circ},\; 50^{\circ}$ radially. The torque coefficient was also calculated.

  • PDF