• 제목/요약/키워드: Sliding Mode Observer

검색결과 320건 처리시간 0.032초

Improvement on Sensorless Vector Control Performance of PMSM with Sliding Mode Observer

  • Wibowo, Wahyu Kunto;Jeong, Seok-Kwon;Jung, Young-Mi
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.129-136
    • /
    • 2014
  • This paper proposes improvement on sensorless vector control performance of a permanent magnet synchronous motor (PMSM) with sliding mode observer. An adaptive observer gain and second order cascade low-pass filter (LPF) were used to improve the estimation accuracy of the rotor position and speed. The adaptive observer gain was applied to suppress the chattering intensity and obtained by using the Lyapunov's stability criterion. The second order cascade LPF was designed for the system to escalate the filtering performance of the back-emf estimation. Furthermore, genetic algorithm was used to optimize the system PI controller's performance. Simulation results showed the effectiveness of the suggested improvement strategy. Moreover, the strategy was useful for the sensorless vector control of PMSM to operate on the low-speed area.

스튜어트 플랫폼의 견실제어를 위한 슬라이딩 섭동 관측기를 갖는 슬라이딩 모드 제어기 개발 (The Design of Sliding Mode Controller with Sliding Perturbation Observer for a Robust Control of Stewart Platform Manipulator)

  • 유기성;박민규;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제8권8호
    • /
    • pp.639-648
    • /
    • 2002
  • The stewart platform manipulator is a manipulator that has the closed-loop structure with an upper plate end-effector and a base frame. The stewart platform manipulator has the merit of high working accuracy and high stiffness compared with a serial manipulator. However, this is a complex structure, so controllability of the system is not so good. In this paper, we introduce a new robust motion control algorithm using partial state feedback for a class of nonlinear systems in the presence of modelling uncertainties and external disturbances. The major contribution of this work introduces the development and design of robust observer for the state and the perturbation, which is integrated into a variable structure controller(VSC) structure. The combination of controller/observer improves the control performance, because of the robust routine called sliding mode control with sliding perturbation observer(SMCSPO). Simulation and experiment are performed to apply to the manipulator. And their results show a high accuracy and a good performance.

불확실 이산 시스템을 위한 외란관측기와 적분 동특성형 슬라이딩 면을 갖는 새로운 둔감한 이산 적분 정적 출력 궤환 가변구조제어기 (A New Robust Discrete Integral Static Output Feedback Variable Structure Controller with Disturbance Observer and Integral Dynamic-Type Sliding Surface for Uncertain Discrete Systems)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권7호
    • /
    • pp.1289-1294
    • /
    • 2010
  • In this paper, a new discrete integral static output feedback variable structure controller based on the a new integral dynamic-type sliding surface and output feedback discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed integral dynamic-type sliding surface. The output feedback discrete version of disturbance observer is presented for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined integral dynamic-type sliding surface for guaranteeing the designed output in the integral dynamic-type sliding surface from any initial condition for all the parameter variations and disturbances. Using discrete Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

유도전동기 센서리스 벡터제어를 위한 적응슬라이딩모드 제어기 (Sensorless Vector Control for IM Adaptive Sliding Mode Controller)

  • 김영춘;조문택;주해종
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.5143-5149
    • /
    • 2011
  • 본 논문은 슬라이딩 모드 관측기를 이용한 적응 속도 센서리스 벡터제어에 대해 제안한다. 적응 슬라이딩 모드 관측기는 전압식을 이용한 전동기 고정자 기준좌표에 의해 회전자 자속성분이 관측된다. Lyapunov 함수에 의해 얻어지는 추가적인 관계로부터 전동기의 속도가 구해진다. 성능 확인을 위해 전통적인 PI 제어기와 슬라이딩 모드 관측기의 추가적인 특성에 대해 시뮬레이션과 실험을 통해 비교하였다. 분석과 비교에 의한 결과에 의하면 시스템의 유용성을 확인할 수 있었다.

슬라이딩 모드 관측기와 제어기를 이용한 서보시스템의 정밀제어 (Precise Control for Servo Systems Using Sliding Mode Observer and Controller)

  • 한성익;공준희;신대왕;김종식
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.154-162
    • /
    • 2002
  • The effect of nonlinear friction in the low velocity is dominant in precise controlled mechanisms and it is difficult to model. This paper is concerned with the compensation for friction using the variable structure system approach as nonmodel based method. The problem of chattering in the sliding mode controller is suppressed by the implementation of the boundary layer concept. And the estimation for friction using sliding mode observer makes the upper bound of matched uncertainty reduced. Accordingly, the effect of chattering can be more suppressed. And the sliding surface is constructed by adding an integral component to the switching function that is made by using error dynamics. This sliding surface guarantees the good tracking performance. Experimental results for a XY table system show that the proposed method has a good performance especially in the low velocity.

Sliding Mode Controller with Sliding Perturbation Observer Based on Gain Optimization using Genetic Algorithm

  • You, Ki-Sung;Lee, Min-Cheol;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.630-639
    • /
    • 2004
  • The Stewart platform manipulator is a closed-kinematics chain robot manipulator that is capable of providing high structural rigidity and positional accuracy. However, this is a complex and nonlinear system, so the control performance of the system is not so good. In this paper, a new robust motion control algorithm is proposed. The algorithm uses partial state feedback for a class of nonlinear systems with modeling uncertainties and external disturbances. The major contribution is the design of a robust observer for the state and the perturbation of the Stewart platform, which is combined with a variable structure controller (VSC). The combination of controller and observer provides the robust routine called sliding mode control with sliding perturbation observe. (SMCSPO). The optimal gains of SMCSPO, which is determined by nominal eigenvalues, are easily obtained by genetic algorithm. The proposed fitness function that evaluates the gain optimization is to put sliding function. The control performance of the proposed algorithm is evaluated by the simulation and experiment to apply to the Stewart platform. The results showed high accuracy and good performance.

Improvement of Conventional Sliding Mode Observer for Full Range Sensorless Control of a PMSM

  • Wibowo, Wahyu Kunto;Jeong, Seok-Kwon
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.89-96
    • /
    • 2015
  • This paper investigates some strategies to overcome the chattering problem of the conventional sliding mode observer (SMO) and to improve the rotor position estimation performance for full range sensorless control of a PMSM. An adaptive observer gain based on the Lyapunov's stability criterion and a cascade low pass filter with advanced phase delay compensation were proposed to reduce the chattering problem and to strengthen the filtering capability of the SMO. Several cases studies through experiments were carried out to confirm conventional SMO's problems and effectiveness of the proposed strategies. The experimental results show that the proposed method gives precise estimation on speed and rotor position when the motor rotates on 2% of its rated speed.

반복 적응 슬라이딩 모드 관측기를 이용한 초고속 영구자석형 동기 전동기의 전영역 센서리스 제어 (Sensorless Control of High-speed Type PMSM in Wide Speed Range using an Iterative Adaptive Sliding Mode Observer)

  • 김종무;최정원;이석규
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.69-76
    • /
    • 2009
  • This paper describes sensorless high-speed control for 45,000rpm/22kw type PMSM by using iterative adaptive sliding mode observer. The proposed algorithm is based on sensorless vector control by on-line estimating the speed of rotor in the wide speed operating range between the starting operation. In addition, it shows the enhanced performance of the iterative adaptive observer by lessening its chattering and getting stable response in limited PWM period. The simulation and experiment results show the reliable performance of the proposed algorithm through starting to high speed operating range.

전력계통안정기를 위한 $H_{\infty}$ 관측기에 기준한 슬라이딩 모드 제어기 설계 : Part II (Design of $H_{\infty}$ Observer-Based Sliding Mode Controller for Power System Stabilizer : Part II)

  • 이상성;박종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.1159-1161
    • /
    • 1997
  • This paper presents a power system stabilizer(PSS) using the $H_{\infty}$ observer-based sliding mode controller($H_{\infty}$ observer-based SMC) for unmeasurable state variables. The effectiveness of the proposed $H_{\infty}$ observer-based SMPSS for unmeasurable state variables is shown by the simulation result.

  • PDF

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

  • Foo, Gilbert;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.582-592
    • /
    • 2009
  • This paper proposes a new speed sensorless direct torque and flux controlled interior permanent magnet synchronous motor (IPMSM) drive. Closed-loop control of both the torque and stator flux linkage are achieved by using two proportional-integral (PI) controllers. The reference voltage vectors are generated by a SVM unit. The drive uses an adaptive sliding mode observer for joint stator flux and rotor speed estimation. Global asymptotic stability of the observer is achieved via Lyapunov analysis. At low speeds, the observer is combined with the high frequency signal injection technique for stable operation down to standstill. Hence, the sensorless drive is capable of exhibiting high dynamic and steady-state performances over a wide speed range. The operating range of the direct torque and flux controlled (DTFC) drive is extended into the high speed region by incorporating field weakening. Experimental results confirm the effectiveness of the proposed method.