• Title/Summary/Keyword: Sliding Mesh

Search Result 79, Processing Time 0.033 seconds

Numerical Study on Flow Patterns in a Stirred Tank with Impeller Types (혼합탱크 내의 임펠라 형태에 따른 유동 특성에 관한 수치해석)

  • Song, Gil-Sub;Oh, Sueg-Young;Oh, Jeong-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.2 s.15
    • /
    • pp.29-35
    • /
    • 2002
  • The present study is concerned with the flow patterns induced by various impellers in a rectangular tank. Impellers are FBT (Flat blade turbine), PBT (Pitched blade turbine), Shroud turbine, Rushton turbine, and Helical ribbon turbine types. The solutions of flows in moving reference frames require the use of 'moving' cell zone. The moving zone approaches are based on MRF (Multiple reference frame), which is a steady-state approximation and sliding method, which is an unsteady-state approximation. Numerical results using two moving zone approaches we compared with experiments by Ranade & Joshi, which have done extensive LDA measurements of the flow generated by a standard six-bladed Rushton turbine in a cylindrical baffled vessel. In this paper, we simulated the flow patterns with above-mentioned moving zone approaches and impellers. Turbulence model used is RNG $k-{\epsilon}$ model. Sliding-mesh method is more effective than MRF for simulating the rectangular tank with inlet and outlet. RNG $k-{\epsilon}$ model strongly underestimates the velocity of experimental data and velocity by Chen & Kim's model, but it seems to be correctly predicted in overall distribution.

Finite Element Inverse Analysis of an S-rail Forming Process with Direct Mesh Mapping Method and Crash Analysis considering Forming Effects (직접격자 사상법을 이용한 S-rail 성형공정의 유한요소 역해석 및 성형효과를 고려한 충돌해석)

  • Kim, Seung-Ho;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.125-128
    • /
    • 2002
  • The automotive industry have made an effort to reduce the weight of vehicle structures with increased safety, while initial model of the final product does not contain any prehistoric effects in a design stave. It takes lots of time to calculate forming effects that have great influences on the energy absorption of structures. In this paper, finite element inverse analysis is adopted to calculate forming effects, such as thickness variation and effective plastic strain as well as an initial blank shape with small amount of computation time. Crash analysis can be directly performed after inverse analysis of the forming process without remeshing scheme. The direct mesh mapping method is used to calculate an initial guess from the sliding constraint surface that is extracted from the die and punch set. Analysis results show that energy absorption of structures is increased with consideration of forming effects and finite element inverse analysis is usefully applicable to calculate forming erects of vehicle structures for the crash analysis.

  • PDF

Fully Unstructured Mesh based Computation of Viscous Flow around Marine Propellers (비정렬격자를 이용한 프로펠러 성능 및 주위 유동해석)

  • Kim, Min-Geon;Ahn, Hyung Taek;Lee, Jin-Tae;Lee, Hong-Gi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.162-170
    • /
    • 2014
  • A CFD(Computational Fluid Dynamics) analysis is presented to predict hydrodynamic characteristics of a marine propeller. A commercial RANS(Reynolds Averaged Navier-Stokes equation) solver, namely FLUENT, is utilized in conjunction with fully unstructured meshes around rotating propeller. Mesh generation process is greatly accelerated by using fully unstructured meshes composed of both isotropic and anisotropic tetrahedral elements. The anisotropic tetrahedral elements were used in the flow domain near the blade and shaft, where the viscous effect is important, having complex shape yet resolving the thin boundary layers. For other regions, isotropic tetrahedral elements are utilized. Two different approaches simulating rotational effect of the propeller are employed, namely Moving reference frame technique for steady simulation, and Sliding mesh technique for unsteady simulation. Both approaches are applied to the propeller open water (POW) test simulation. The current results, which are thrust and torque coefficients, are compared with available experimental data.

A 3-Dimensional Numerical Simulation of Impulse Turbine for Wave Energy Conversion

  • Lee, Hyeong-Gu;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.535-541
    • /
    • 2003
  • This paper describes numerical analysis of the impulse turbine with fixed guide vanes, a high performance hi-directional air turbine having simple structure for wane energy conversion. A 3-dimensional incompressible viscous flow numerical analysis based on the full Reynolds-averaged Wavier-Stokes equations was made to investigate the internal flow behavior Numerical results ate compared with experimental data. As a result, a suitable choice for the one of design factors has been clarified.

A Numerical Study on Hydrodynamic Interactions between Dynamic Positioning Thrusters (동적위치제어용 스러스터 사이의 유체역학적 상호작용에 대한 수치해석 연구)

  • Jin, Doo Hwa;Lee, Sang Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.373-380
    • /
    • 2017
  • In this study, we conducted computational fluid dynamics (CFD) simulations for the unsteady hydrodynamic interaction of multiple thrusters by solving Reynolds averaged Navier-Stokes equations. A commercial CFD software, STAR-CCM+ was used for all simulations by employing a ducted thruster model with combination of a propeller and No. 19a duct. A sliding mesh technique was used to treat dynamic motion of propeller rotation and non-conformal hexahedral grid system was considered. Four different combinations in tilting and azimuth angles of the thrusters were considered to investigate the effects on the propulsion performance. We could find that thruster-hull and thruster-thruster interactions has significant effect on propulsion performance and further study will be required for the optimal configurations with the best tilting and relative azimuth angle between thrusters.

Suggestion of the Analysis Model and Verification on Rotating Flow in Stirred Tanks Using CFD (전산유체역학을 이용한 교반 탱크 내에서의 회전유동에 대한 해석 모델의 제안 및 검증)

  • Hwang, Seung Sik;Yong, Cho Hwan;Choi, Gyuhong;Shin, Dohghoon;Chung, Tae Yong
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.28-37
    • /
    • 2013
  • Stirred tank is widely used in various industries for mixing operations and chemical reactions for single- or multi-phase fluid systems. For designing agitator of high performance, quantity data of internal flow characteristics influenced by mixing performance are definitely confirmed but quantity analysis about the transient flow characteristics of complicate structure is recognized as difficult problem in the present. In this study, two models of commercial CFD code Fluent 6.3 used to propose suitable for the tank analysis. Agitation of Stirred tank is analyzed using a mixed model and the flow in the stirred tank is analyzed using a standard k-${\varepsilon}$ model. Multiple reference frame(MRF) and Sliding mesh(SM), the analysis techniques were used For compare a result of CFD with a visualization experiment result, to grasp internal flow and mixing characteristic in stirred tank and to present fundamental analysis method.

Flexible CFD meshing strategy for prediction of ship resistance and propulsion performance

  • Seo, Jeong-Hwa;Seol, Dong-Myung;Lee, Ju-Hyun;Rhee, Shin-Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.139-145
    • /
    • 2010
  • In the present study, we conducted resistance test, propeller open water test and self-propulsion test for a ship's resistance and propulsion performance, using computational fluid dynamics techniques, where a Reynolds-averaged Navier-Stokes equations solver was employed. For convenience of mesh generation, unstructured meshes were used in the bow and stern region of a ship, where the hull shape is formed of delicate curved surfaces. On the other hand, structured meshes were generated for the middle part of the hull and the rest of the domain, i.e., the region of relatively simple geometry. To facilitate the rotating propeller for propeller open water test and self-propulsion test, a sliding mesh technique was adopted. Free-surface effects were included by employing the volume of fluid method for multi-phase flows. The computational results were validated by comparing with the existing experimental data.

Analysis of the Aeroacoustic Characteristics of Cross-Flow Fan Using a Commercial CFD Code (상용 CFD 코드를 이용한 횡류홴 공력소음 특성 해석)

  • Jeon, Wan-Ho;Chung, Moon-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.289-294
    • /
    • 2002
  • In this study, performance, flow characteristics and noise of a cross-flow-fan system, used in indoor unit of the split-type air conditioner, were predicted by computational simulation. Triangular elements were used to mesh the calculation domain and quadrilateral elements were attached to the blade surfaces and walls to enhance the simulation quality. The unsteady incompressible Wavier-Stokes equations were solved using a sliding mesh technique on the interface between rotating fan region and the outside. Two stripes of velocity stream inside the cross-flow-fan were shown - the one was due to the eccentric vortex and the other was due to the normal entrance flow. As the flow rate increased, the center of the eccentric vortex moved toward the inner blade tip and rear-guide, and the exiting flow still had velocity variation along the stabilizer, which can increase the noise level. The acoustic pressure was calculated by using Lowson's equation. From the calculated acoustic pressure, it was found that the trailing edge is a dominant of acoustic generation.

  • PDF

Design and implementation of the SliM image processor chip (SliM 이미지 프로세서 칩 설계 및 구현)

  • 옹수환;선우명훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.10
    • /
    • pp.186-194
    • /
    • 1996
  • The SliM (sliding memory plane) array processor has been proposed to alleviate disadvantages of existing mesh-connected SIMD(single instruction stream- multiple data streams) array processors, such as the inter-PE(processing element) communication overhead, the data I/O overhead and complicated interconnections. This paper presents the deisgn and implementation of SliM image processor ASIC (application specific integrated circuit) chip consisting of mesh connected 5 X 5 PE. The PE architecture implemented here is quite different from the originally proposed PE. We have performed the front-end design, such as VHDL (VHSIC hardware description language)modeling, logic synthesis and simulation, and have doen the back-end design procedure. The SliM ASIC chip used the VTI 0.8$\mu$m standard cell library (v8r4.4) has 55,255 gates and twenty-five 128 X 9 bit SRAM modules. The chip has the 326.71 X 313.24mil$^{2}$ die size and is packed using the 144 pin MQFP. The chip operates perfectly at 25 MHz and gives 625 MIPS. For performance evaluation, we developed parallel algorithms and the performance results showed improvement compared with existing image processors.

  • PDF

A Numerical Study on the Flow around a Rudder behind Low Speed Full Ship

  • Lee, Young-Gill;Yu, Jin-Won;Kang, Bong-Han;Pak, Kyung-Ryeung
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.2
    • /
    • pp.41-52
    • /
    • 2008
  • The development of a high-lift rudder is needed because low speed full ships such as the VLCC(Very Large Crude oil Carrier) have difficulty for obtaining enough lifting force from a common rudder. The rudder of a ship is generally positioned behind the hull and propeller. Therefore, rudder design should consider the interactions between hull, propeller, and rudder. In the present study, the FLUENT code and body fitted mesh systems generated by the GRIDGEN program are adopted for the numerical simulations of flow characteristics around a rudder that is interacting with hull and propeller. Sliding mesh model(SMM) is adopted to analyze the interaction between propeller rotation and wake flow behind hull. Several numerical simulations are performed to compare the interactions such as hull-rudder, propeller-rudder, and hull-propeller-rudder. Also, we consider relationships between the interactions. The results of present numerical simulations show the variation of flow characteristics by the interaction between hull, propeller, and rudder, and these results are compared with an existing experimental result. The present study demonstrates that numerical simulations can be used effectively in the design of high-lift rudder behind low speed full ship.