• 제목/요약/키워드: Sliding Mechanism

검색결과 349건 처리시간 0.024초

The structural performance of arches made of few vossoirs with dry-joints

  • Bernat-Maso, Ernest;Gil, Lluis;Marce-Nogue, Jordi
    • Structural Engineering and Mechanics
    • /
    • 제44권6호
    • /
    • pp.775-799
    • /
    • 2012
  • This work approaches the structural performance of masonry arches that have a small ratio between number of vossoirs and span length. The aim of this research is to compare and validate three different methods of analysis (funicular limit analysis F.L.A., kinematic limit analysis K.L.A. and plane stress Finite Element Analysis F.E.A.) with an experimental campaign. 18 failure tests with arches of different shapes and boundary conditions have been performed. The basic failure mechanism was the formation of enough hinges in the geometry. Nevertheless, in few cases, sliding between vossoirs also played a relevant influence. Moreover, few arches didn't reach the collapse. The FLA and KLA didn't find a solution close to the experimental values for some of the tests. The low number of vossoirs and joints become a drawback for an agreement between kinematic mechanism, equilibrium of forces and geometry constraints. FLA finds a lower bound whereas KLA finds an upper bound of the ultimate load of the arch. FEA is the most reliable and robust method and it can reproduce most of the mechanism and ultimate loads. However, special care is required in the definition of boundary conditions for FEA analysis. Scientific justification of the more suitability of numerical methods in front of classic methods at calculating arches with a few vossoirs is the main original contribution of the paper.

Regularity and coupling correlation between acoustic emission and electromagnetic radiation during rock heating process

  • Kong, Biao;Wang, Enyuan;Li, Zenghua
    • Geomechanics and Engineering
    • /
    • 제15권5호
    • /
    • pp.1125-1133
    • /
    • 2018
  • Real-time characterization of the rock thermal deformation and fracture process provides guidance for detecting and evaluating thermal stability of rocks. In this paper, time -frequency characteristics of acoustic emission (AE) and electromagnetic radiation (EMR) signals were studied by conducting experiments during rock continuous heating. The coupling correlation between AE and EMR during rock thermal deformation and failure was analyzed, and the microcosmic mechanism of AE and EMR was theoretically analyzed. During rock continuous heating process, rocks simultaneously produce significant AE and EMR signals. These AE and EMR signals are, however, not completely synchronized, with the AE signals showing obvious fluctuation and the EMR signals increasing gradually. The sliding friction between the cracks is the main mechanism of EMR during the rock thermal deformation and fracture, and the AE is produced while the thermal cracks expanding. Both the EMR and AE monitoring methods can be applied to evaluate the thermal stability of rock in underground mines, although the mechanisms by which these signals generated are different.

SPIN LOSS ANALYSIS OF FRICTION DRIVES: SPHERICAL AND SEMI-SPHERICAL CVT

  • Kim, J.;Choi, K.-H.
    • International Journal of Automotive Technology
    • /
    • 제4권4호
    • /
    • pp.165-172
    • /
    • 2003
  • This article deals with the spin loss analysis of friction drive CVTs, especially for the cases of S-CVT and SS-CVT. There are two main sources of power loss resulting from slippage in the friction drive CVT, spin and slip loss. Spin loss, which is also a main design issue in traction drives, results from the elastic contact deformation of rotating bodies having different rotational velocities. The structure and operating principles of the S-CVT and SS-CVT are first reviewed briefly. And to analyze the losses resulting from slippage, we reviewed previous analyses of the friction mechanism. A modified classical friction model is proposed, which describes the friction behavior including Stribeck (i.e., pre-sliding) effect. It is also performed an in-depth study for the velocity fields generated at the contact regions along with a Hertzian analysis of deflection. Hertzian results were employed to construct the geometric parameters and normal pressure distributions of the contact surface with respect to elastic and plastic deformations. With analytic formulations of the relative velocity field, deflection, and friction mechanism of the S-CVT and SS-CVT, quantitative analyses of spin loss for each case are carried out. As a result, explicit models of spin loss were developed.

슬라이드 방식을 이용한 스크류/볼트 피더기 개발 (Development of A Feeding Device for Screw/Bolt Using the Sliding Method)

  • 김용석;정찬세;양순용
    • 한국생산제조학회지
    • /
    • 제20권4호
    • /
    • pp.502-508
    • /
    • 2011
  • In this paper, we proposed vertical feeding mechanism for a slide parts feeder using the slide type method. This parts feeder of the slide type method have been proposed to suppress the dust generation from the feeding objects. The proposed parts feeder mechanism is composed with the casing hopper, the vertical feeding unit, the in-line feeder and linear shooter unit. And, these mechanisms did modularity through optimum design by means of mechanical and dynamical analysis using the RecurDyn(multi-body dynamics) analysis module. Also were carried out the virtual prototype using the 3-D CAD program. And it had been manufactured as the prototype of the slide parts feeder. The field test for validation of performance was performed directly at the inspection line of bolt and screw. In the field test, this slide parts feeder showed an efficiency of about 1.2 times the bowl feeder. It also showed an epoch reduction in the dust generation compared to the vibration bowl feeder. So this slide parts feeder will be applied useful in the vision inspection system for a screw and bolt.

Design of A Pendulum Type Motor-Driven Blood Pump for Artificial Heart

  • 장준근;정대영;김종원;민병구;한동철
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1990년도 춘계학술대회
    • /
    • pp.1-6
    • /
    • 1990
  • A new version of moving actuator electromechanical total artificial heart was designed to improve total efficiency, durability, and fitting inside thoracic cavity. As compared with our present type of the rolling cylinder actuator, this new model has a pendulum-type actuator with reciprocating motion around the fixed circular path, connected through the gear mechanisms to the motor. By using this mechanism, the efficiency and durability could be improved by replacing sliding mechanism with rolling contact elements. Also, the height of the pump could be decreased from 9cm to 7cm with static stroke volume 65cc. With these improvements, we have implanted this new pump in human size animal (less than 70Kg weight).

  • PDF

유한요소해석에 의한 DLC 코팅면의 마멸기구에 대한 연구 (A Study on Wear Mechanism in Diamond-like Carbon Coated Surface by Finite Element Analysis)

  • 이준혁;박태조
    • Tribology and Lubricants
    • /
    • 제29권6호
    • /
    • pp.366-371
    • /
    • 2013
  • Various heat treatment and surface coating methods have been applied to machine parts. Nowadays, diamond-like carbon (DLC) coatings are widely used because of their excellent tribological characteristics. Despite the numerous studies on DLC-coated engineering surfaces, the exact wear mechanisms related to the coating thickness and elastic modulus have not been fully examined. In this study, a sliding contact problem between a small spherical hard particle and a DLC-coated steel surface is analyzed using a nonlinear finite element code, MARC. The maximum principal stress distributions and deformed surfaces are compared for different coating thicknesses and Young's modulus values. Plastically deformed surface shapes such as a groove and torus indicate that the most dominant wear mechanism for a DLC-coated surface is abrasive wear. Fatigue wear can also play a role in a case where the coating thickness is relatively large and the elastic modulus is high.

횡방향 틸팅 기능을 갖는 이륜 밸런싱 모바일 플랫폼 설계 (Design of a Two-wheeled Balancing Mobile Platform with Tilting Motion)

  • 김상태;서정민;권상주
    • 제어로봇시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.87-93
    • /
    • 2014
  • Conventional two-wheeled balancing robots are limited in terms of turning speed because they lack the lateral motion to compensate for the centrifugal force needed to stop rollover. In order to improve lateral stability, this paper suggests a two-wheeled balancing mobile platform equipped with a tilting mechanism to generate roll motions. In terms of static force analysis, it is shown that the two-body sliding type tilting method is more suitable for small-size mobile robots than the single-body type. For the mathematical modeling, the tilting-balancing platform is assumed as a 3D inverted pendulum and the four-degrees-of-freedom equation of motion is derived. In the velocity/posture control loop, the desired tilting angle is naturally determined according to the changes of forward velocity and steering yaw rate. The efficiency of the developed tilting type balancing mobile platform is validated through experimental results.

Wear Mechanism of CrN Coating on Aluminum Alloys Deposited by AIP Method

  • Kim, Seock-Sam;Suh, Chang-Min;Murakami, Ri-ichi
    • KSTLE International Journal
    • /
    • 제3권1호
    • /
    • pp.43-48
    • /
    • 2002
  • Dry sliding wear and friction test of CrN coaling on two types of aluminum alloy substrates,6061 Al and 7075 Al deposited by arc ion plating, was peformed with a ball-on-disk tribometer. The effects of normal Bead and the mechanical properties of substrate on the friction coefficient and wear-resistance of CrN coating were investigated. The worn surfaces were observed by SEM. The results show that surface micro-hardness of CrN- coated 7075 Al is higher than that of CrN-coated 6061 Al. With an increase in normal lead, wear volume increases, while the friction coefficient decreases. The friction coefficient of CrN-coated 6061 Al is higher than that of CrN-coated 7075 Al, while the wear-resistance of CrN-coated 6061 Al is lower than the CrN-coated 7075 Al's, which indicates that the substrate mechanical properties have strong inf1uences on the friction coefficient and wear of CrN coating. The main wear mechanism was fragments of CrN coating, which were caused by apparent plastic deformation of substrate during wear test.

Design, Implementation and Navigation Test of Manta-type Unmanned Underwater Vehicle

  • Kim, Joon-Young;Ko, Sung-Hyub;Cho, So-Hyung;Lee, Seung-Keon;Sohn, Kyoung-Ho
    • International Journal of Ocean System Engineering
    • /
    • 제1권4호
    • /
    • pp.192-197
    • /
    • 2011
  • This paper describes the mathematical modeling, control algorithm, system design, hardware implementation and experimental test of a Manta-type Unmanned Underwater Vehicle (MUUV). The vehicle has one thruster for longitudinal propulsion, one rudder for heading angle control and two elevators for depth control. It is equipped with a pressure sensor for measuring water depth and Doppler Velocity Log for measuring position and angle. The vehicle is controlled by an on-board PC, which runs with the Windows XP operating system. The dynamic model of 6DOF is derived including the hydrodynamic forces and moments acting on the vehicle, while the hydrodynamic coefficients related to the forces and moments are obtained from experiments or estimated numerically. We also utilized the values obtained from PMM (Planar Motion Mechanism) tests found in the previous publications for numerical simulations. Various controllers such as PID, Sliding mode, Fuzzy and $H{\infty}$ are designed for depth and heading angle control in order to compare the performance of each controller based on simulation. In addition, experimental tests are carried out in a towing tank for depth keeping and heading angle tracking.

분사주조한 Al기지 입자강화 복합재료의 마모특성 (Characterization of Wear Resistance of Particle Reinforced Al Matrix Composite Manufactured by Centrifugal Spray Casting)

  • 배차헌;최학규;방국수
    • 한국주조공학회지
    • /
    • 제24권2호
    • /
    • pp.108-114
    • /
    • 2004
  • $Al_2O_3$, SiC reinforced Al matrix composites were fabricated by centrifugal spray casting method and their wear resistance characteristics have been studied. Particles are generally uniformly distributed in the microstructure of as-cast specimens. In order to investigate the effect of secondary deformation, hot rolling was performed for each specimen of pure Al matrix composites with a reduction of 10, 20, 30, 40 and 50% at $400{\sim}500^{\circ}C$, respectively. Microstructure of specimen showed that particle distribution density and hardness increased because of increasing of reduction ratio. Wear test with a various sliding velocity of 1.98, 2.38, 2.88 and 3.53m/sec showed that the wear resistance characterization of composite improved remarkably compared to the normal alloy and performs without reinforced particles. Microstructural observation for the worn surface of pure Al specimens without particles showed that a change in wear mechanism seemed to separate layer by surface fatigue. In other case of Al composite reinforced with $Al_2O_3$ and SiC, the grinder type of wear mechanism was shown.