• Title/Summary/Keyword: Sliding Friction

Search Result 834, Processing Time 0.03 seconds

Design of sliding-type base isolators by the concept of equivalent damping

  • Yang, Yeong-Bin;Chen, Yi-Chang
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.299-310
    • /
    • 1999
  • One problem with base isolators of the sliding type is that their dynamic responses are nonlinear, which cannot be solved in an easy manner, as distinction must be made between the sliding and non-sliding phases. The lack of a simple method for analyzing structures installed with base isolators is one of the obstacles encountered in application of these devices. As an initial effort toward simplification of the analysis procedure for base-isolated structures, an approach will be proposed in this paper for computing the equivalent damping for the resilient-friction base isolators (R-FBI), based on the condition that the sum of the least squares of errors of the linearized response with reference to the original nonlinear one is a minimum. With the aid of equivalent damping, the original nonlinear system can be replaced by a linear one, which can then be solved by methods readily available. In this paper, equivalent damping curves are established for all ranges of the parameters that characterize the R-FBI for some design spectra.

Analysis of Frequency Characteristics of Writing Instruments Due to Friction (필기구 마찰의 주파수 특성 분석)

  • Shin, JaeUn;Park, JinHwak;Lee, YoungZe
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.148-152
    • /
    • 2017
  • The feel of writing is important to customers when they buy smart devices with stylus such as smartphones and tablet computers. With an aim to reproduce the tactile sensibility of writing instruments when people write on the glass display using a stylus, this study focuses on the frequency characteristics of writing instruments that can describe the vibrations of writing instruments sliding over counter surfaces. In addition, this study includes the effect of various factors influencing the friction of writing instruments such as lubricant, nib material, and contact type. We perform sliding experiments with six types of writing instruments and a sheet of paper to understand the relation between the friction conditions of the nib and the frequency characteristics. As this research focuses on the tactile perception of human skin when people use a writing instrument, the analysis of frequency characteristics is performed in the perceptible frequency range of mechanoreceptors in the human skin. As a result, three types of frequency characteristics are identified. Low frequency peaks are observed for a metal nib with ink; high frequency peaks are observed for a nib without ink; and, middle frequency peaks with a wide range of distribution occurs for fabric nibs with ink. Therefore, to implement the proper feel of writing, at least three types of vibrations have to be made.

A Study on the Friction Characteristics of Vulcanized Natural Rubber Plate (가황된 천연고무 판재의 마찰특성에 관한 연구)

  • Kim, D.J.;Nah, C.;Lee, Y.S.;Kim, W.D.
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.121-129
    • /
    • 2001
  • The friction characteristics of natural rubber plates under various conditions including sliding speed, normal force, hardness, lubrication conditions and thickness of plate are analyzed experimentally. The frictional force and normal force are measured by a tester pin and a load ceil with strain gages. Experimental results suggest that the coefficient of friction decreases with increasing the hardness of rubber and decreasing the thickness of plate. The effect of sliding speed is not significant over the speed range employed. The coefficient of friction is found to be about 0.1 under oil lubrication condition and varies from 0.9 to 3.9 under no lubrication condition.

  • PDF

Tribological Behavior of Fe-based Bulk Amorphous Alloy in a Distilled Water Environment (수중환경에서 Fe계 벌크 비정질 합금의 트라이볼로지적 거동)

  • Jang, Beomtaek;Yi, Seonghoon
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.295-302
    • /
    • 2014
  • The tribological behavior of an Fe-based bulk amorphous alloy while sliding against a AISI 304 disc is investigated using a unidirectional pin-on-disc type tribometer in dry and distilled water environments. The rod-shaped bulk pins are fabricated by suction casting. The crystallinities of the bulk amorphous alloys before and after the friction tests are determined by X-ray diffraction. The friction coefficient and specific wear rate of the amorphous pin in the water environment are found to be twice and thrice as much as in the dry environment at a low applied pressure, respectively. However, at a higher pressure, the friction coefficient and specific wear rate are 0.4 and 1.02 mg/(Nm/s), respectively, in the water environment. A microstructure analysis shows that the worn surface of the alloy is characterized by delamination from the smooth friction surface, and thus delamination is the main wear mechanism during the friction test in dry sliding environment. In contrast, brittle fracture morphologies are apparent on the friction surface formed in distilled water environment. For the sample tested at a lower sliding speed, the XPS data from the oxide layer are similar to those of the pure element with weak suboxide peaks. For higher sliding speeds, all the main sharp peaks representing the core level binding energies are shifted to the oxide region.

Nanocrystalline Diamond Coated SiC Balls in Tribometer (나노결정질 다이아몬드가 코팅된 SiC 마모시험기 볼)

  • Im, Jong Hwan;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.263-268
    • /
    • 2014
  • Nanocrystalline diamond(NCD) coated SiC balls were applied in a ball-on-disk tribometer. After seeding in an ultrasonic bath containing nanometer diamond powders, $2.2{\mu}m$ thick NCD films were deposited on sintered 3 mm diameter SiC balls at $600^{\circ}C$ in a 2.45 GHz microwave plasma CVD system. Bare $ZrO_2$ and SiC balls were prepared for comparison as test balls. Tribology tests were performed in air with pairs of three different balls and mirror polished steel(SKH51) disk. The wear tracks on balls and disks were examined by optical microscope and alpha step profiler. Under the load of 3 N, the friction coefficients of steel against $ZrO_2$, SiC and NCD-coated balls were between 0.4 and 0.8. After a few thousands sliding laps, the friction coefficient of NCD-coated balls dropped from 0.45 to below 0.1 and maintained thereafter. Under a higher load of 10 N or 20 N with a long sliding distance of 2 km, $ZrO_2$ and SiC balls exhibited the similar friction coefficients as above. The friction coefficient of NCD-coated balls was less than 0.1 from the beginning and increased to above 0.1 steadily or with some fluctuations as sliding distance increased. NCD coating layers were found worn out after long duration and/or high load sliding test, which resulted in the friction coefficient higher than 0.1.

Scuffing and Wear of the Vane/Roller Surfaces for Rotary Compressor Depending on Several Sliding Condition

  • Lee, Y.Z.;Oh, S.D.;Kim, J.W.;Kim, C.W.;Choi, J.K.;Lee, I.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.227-228
    • /
    • 2002
  • One of the serious challenges in developing rotary compressor with HFC refrigerant is the prediction of scuffing times and wear amounts between vane and roller surface. In this study, the tribological characteristics of sliding surfaces using roller-vane geometry of rotary compressor were investigated. The sliding tests were carried out under various sliding speeds, normal loads and surface roughness. During the tests, friction force, wear scar width, time to failure, surface temperature, and surface roughness were monitored. Because severe wear was occurred on vane surface, TiN coating was applied on sliding surfaces to prolong the wear-life of vane-roller interfaces. From the sliding tests, it was found that there was the optimum initial surface roughness to break in and to prolong the wear life of sliding surfaces. Depending on load and speed, the protective layers, which were composed of metallic oxide and organic compound, were formed on sliding surfaces. Those would play an important role in the amount of friction and wear between roller and vane surfaces.

  • PDF

Effect of Stress History on Friction and Wear of Metals in Dry and Boundary Lubricated Conditions (건조 및 경계윤활 조건에서 응력이력에 따른 금속재료의 마찰 마멸 특성)

  • 황동환;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04a
    • /
    • pp.93-98
    • /
    • 1996
  • Friction and wear characteristics of metals in dry and boundary lubricated sliding conditions are observed experimentally using pin-on-disk and pin-on-plate type tribotesters. The motivation of this research is to investigate the effect of sliding history on the tribological behavior of metals. Cu and SM45C steel materials were used for the experiment. The results show that in dry condition the fictional behavior as well as wear of the specimens differed between uni-directional and bi-directional sliding conditions. The friction coefficient values, wear profile and optical micrograph of the wear track are presented.

  • PDF

FRICTION AND WEAR PROPERTIES OF MICRO TEXTURED SURFACES IN BOUNDARY LUBRICATED SLIDING

  • Pettersson, U.;Jacobson, S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.207-208
    • /
    • 2002
  • In the present study, the friction and wear properties of boundary lubricated textured surfaces were investigated. The capability of textured surfaces to feed lubricant into the interface of a sliding contact and to isolate wear partices was studied and related to the properties of the textured surfaces. Well-defined surface textures were produced by lithography and anisotropic etching of silicon wafers. Different widths and distributions of parallel groves were manufactured and subsequently the wafers were PVD coated with thin wear resistant TiN or DLC coatings, retaining the substrate texture. The surfaces were evaluated in reciprocating sliding against a ball bearing steel ball under starved or boundary lubricated conditions.

  • PDF

Establishing Traffic Speed Limits Standard and Accident Risk Analysis of Truck (화물차량의 사고위험도 분석 및 통행속도 제한기준 정립)

  • Kim, Jae Hyun;Hong, Ki Nam;Seo, Dong Woo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.149-157
    • /
    • 2016
  • This paper presents the traffic speed limit of heavy vehicles at each wind velocity region, which is based on their accident risk analysis under cross-wind. The variables for the accident risk analysis are overall height, overall length, intake weight, and friction coefficient of the road surface. It was confirmed from analysis results that the risk of overturning increased with higher overall height and length, and the risk of sliding decreased with higher intake weight. The risk of sliding was largest at the friction coefficient of 0.1, and the risk of overturning was lagest at friction coefficient more than 0.25. Finally, traffic speed limit was proposed by using the accident risk analysis.

Deformation and Fracture Behavioos of Soda-lime Glass by Sliding Microindentation (미끄럼 미소압입에 의한 소다석회 유리의 변형 및 파괴 거동)

  • 안유민;최상현;박상신
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.18-25
    • /
    • 1997
  • The various deformation and fracture behaviors under light loads in soda-lime glass under sliding Vickers indentation have been studied. In soda-lime glass, deformation and fracture behaviors can be classified into four different patterns by applied load. At very light load (<0.1N), plastic deformation only occurred. At low loads (0.1~0.8N), median crack, appear. At intermediate loads (0.8~3.0N), median and lateral cracking occurred leading to a large chipping. At high loads (3.0~6.0N), a crushed zone was observed with median crack. The friction experiment finds that the increasing in the friction coefficients coincides with the onset of crushing in soda-lime glass.